論文の概要: Boosting Independent Component Analysis
- arxiv url: http://arxiv.org/abs/2112.06920v1
- Date: Sun, 12 Dec 2021 14:53:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 15:17:53.193048
- Title: Boosting Independent Component Analysis
- Title(参考訳): 独立コンポーネント分析の強化
- Authors: Yunpeng Li, ZhaoHui Ye
- Abstract要約: 本稿では,独立成分分析のためのブースティングに基づく新しいアルゴリズムを提案する。
提案アルゴリズムは,最大推定値にブースティングを導入することで,非パラメトリック独立成分分析のギャップを埋める。
- 参考スコア(独自算出の注目度): 5.770800671793959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Independent component analysis is intended to recover the unknown components
as independent as possible from their linear mixtures. This technique has been
widely used in many fields, such as data analysis, signal processing, and
machine learning. In this paper, we present a novel boosting-based algorithm
for independent component analysis. Our algorithm fills the gap in the
nonparametric independent component analysis by introducing boosting to maximum
likelihood estimation. A variety of experiments validate its performance
compared with many of the presently known algorithms.
- Abstract(参考訳): 独立成分分析は、線形混合物から可能な限り独立して未知の成分を回収することを目的としている。
このテクニックは、データ分析、信号処理、機械学習など、多くの分野で広く使われている。
本稿では,独立成分分析のための新しいブースティングベースアルゴリズムを提案する。
提案アルゴリズムは,最大推定値にブースティングを導入することで,非パラメトリック独立成分分析のギャップを埋める。
様々な実験が、現在知られている多くのアルゴリズムと比較して、その性能を検証する。
関連論文リスト
- Efficient Estimation of Unique Components in Independent Component Analysis by Matrix Representation [1.0282274843007793]
独立成分分析(ICA)は信号処理や特徴抽出の様々な応用において広く用いられている手法である。
本稿では,アルゴリズムを行列表現で再構成することにより,ICAの固有推定を高度に高速化する。
人工データセットと脳波データを用いた実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-08-30T09:01:04Z) - Shared Independent Component Analysis for Multi-Subject Neuroimaging [107.29179765643042]
本稿では,ShICA (Shared Independent Component Analysis) を導入し,各ビューを加法ガウス雑音によって汚染された共有独立成分の線形変換としてモデル化する。
このモデルは、成分がガウス的でないか、あるいはノイズ分散に十分な多様性がある場合、同定可能であることを示す。
我々は,fMRIおよびMEGデータセットの実証的証拠として,ShICAが代替品よりも正確な成分推定を行うことを示す。
論文 参考訳(メタデータ) (2021-10-26T08:54:41Z) - Eigen Analysis of Self-Attention and its Reconstruction from Partial
Computation [58.80806716024701]
ドット積に基づく自己注意を用いて計算した注意点のグローバルな構造について検討する。
注意点の変動の大部分は低次元固有空間にあることがわかった。
トークンペアの部分的な部分集合に対してのみスコアを計算し、それを用いて残りのペアのスコアを推定する。
論文 参考訳(メタデータ) (2021-06-16T14:38:42Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,各独立成分を推定する副産物オンライン時系列アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T18:52:37Z) - A Framework for Private Matrix Analysis [20.407204637672887]
我々は、スペクトル近似、主成分分析、線形回帰のための空間微分プライベートアルゴリズムを第1の効率$o(W)$で提供する。
また、主成分分析の2つの重要な変種に対して、効率的な微分プライベートアルゴリズムを創出し、示す。
論文 参考訳(メタデータ) (2020-09-06T08:01:59Z) - WICA: nonlinear weighted ICA [72.02008296553318]
独立成分分析(ICA)は、データのコンポーネントが独立している座標系を見つけることを目的としている。
我々は、WICAと呼ばれる新しい非線形ICAモデルを構築し、他のアルゴリズムよりも優れた、より安定した結果を得る。
論文 参考訳(メタデータ) (2020-01-13T10:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。