論文の概要: Stochastic Approximation for Online Tensorial Independent Component
Analysis
- arxiv url: http://arxiv.org/abs/2012.14415v1
- Date: Mon, 28 Dec 2020 18:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 11:08:49.862055
- Title: Stochastic Approximation for Online Tensorial Independent Component
Analysis
- Title(参考訳): オンラインテンソル独立成分分析のための確率近似
- Authors: Chris Junchi Li, Michael I. Jordan
- Abstract要約: 独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,各独立成分を推定する副産物オンライン時系列アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 98.34292831923335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Independent component analysis (ICA) has been a popular dimension reduction
tool in statistical machine learning and signal processing. In this paper, we
present a convergence analysis for an online tensorial ICA algorithm, by
viewing the problem as a nonconvex stochastic approximation problem. For
estimating one component, we provide a dynamics-based analysis to prove that
our online tensorial ICA algorithm with a specific choice of stepsize achieves
a sharp finite-sample error bound. In particular, under a mild assumption on
the data-generating distribution and a scaling condition such that $d^4 / T$ is
sufficiently small up to a polylogarithmic factor of data dimension $d$ and
sample size $T$, a sharp finite-sample error bound of $\tilde O(\sqrt{d / T})$
can be obtained. As a by-product, we also design an online tensorial ICA
algorithm that estimates multiple independent components in parallel, achieving
desirable finite-sample error bound for each independent component estimator.
- Abstract(参考訳): 独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,この問題を非凸確率近似問題として見ることにより,オンラインテンソルicaアルゴリズムの収束解析を行う。
1つの成分を推定するために, オンラインテンソルicaアルゴリズムがステップライズの選択により, 鋭い有限サンプル誤差バウンドを達成することを証明するために, ダイナミクスに基づく解析を行う。
特に、データ生成分布とスケーリング条件について、$d^4 / T$がデータ次元$d$とサンプルサイズ$T$の多対数係数まで十分に小さいという軽微な仮定の下で、鋭い有限サンプル誤差の$\tilde O(\sqrt{d / T})$を得ることができる。
副産物として,複数の独立成分を並列に推定し,各独立成分推定器に対して所望の有限サンプル誤差を求めるオンラインテンソルicaアルゴリズムを設計する。
関連論文リスト
- Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization [7.114174944371803]
ユークリッド距離情報点対を埋め込む適切な点を見つける問題は、コアタスクとサブマシン学習の問題の両方として生じる。
本稿では,最小限のサンプル数を考えると,この問題を解決することを目的とする。
論文 参考訳(メタデータ) (2024-10-22T13:02:12Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - Large Dimensional Independent Component Analysis: Statistical Optimality
and Computational Tractability [13.104413212606577]
独立成分分析(ICA)における最適統計性能と計算制約の影響について検討する。
最適サンプルの複雑性は次元において線形であることが示される。
我々は,最適サンプルの複雑性と最小収束率の両立が可能な計算抽出可能な推定値を開発する。
論文 参考訳(メタデータ) (2023-03-31T15:46:30Z) - Moment Estimation for Nonparametric Mixture Models Through Implicit
Tensor Decomposition [7.139680863764187]
条件に依存しない混合モデルを$mathbbRn$で推定するために,最小二乗法を交互に最適化する手法を提案する。
線形解を用いて、累積分布関数、高次モーメント、その他の成分分布の統計値を計算する。
数値実験は、アルゴリズムの競合性能と、多くのモデルや応用への適用性を実証する。
論文 参考訳(メタデータ) (2022-10-25T23:31:33Z) - Robust learning of data anomalies with analytically-solvable entropic
outlier sparsification [0.0]
Outlier Sparsification (EOS) はデータ異常検出のための堅牢な計算戦略として提案されている。
EOSの性能は、合成問題や、バイオメディシンからの部分的に分類された分類問題において、一般的に使用される様々なツールと比較される。
論文 参考訳(メタデータ) (2021-12-22T10:13:29Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
本研究では,多元的固有ベクトルを分散制約で同時に計算するTruncated Orthogonal Iterationの2つの変種を提案する。
次に,我々のアルゴリズムを適用して,幅広いテストデータセットに対するスパース原理成分分析問題を解く。
論文 参考訳(メタデータ) (2021-03-24T23:11:32Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。