論文の概要: Representing Inferences and their Lexicalization
- arxiv url: http://arxiv.org/abs/2112.07711v1
- Date: Tue, 14 Dec 2021 19:23:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 07:14:14.547875
- Title: Representing Inferences and their Lexicalization
- Title(参考訳): 推論の表現とその語彙化
- Authors: David McDonald, James Pustejovsky
- Abstract要約: 単語の意味は、それが進行中の状況に付加する実体、述語、述語、潜在的な推論であると考えられている。
単語が構成されるにつれて、状況における最小限のモデルは、制限と直接推論へと進化する。
- 参考スコア(独自算出の注目度): 7.081604594416339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have recently begun a project to develop a more effective and efficient
way to marshal inferences from background knowledge to facilitate deep natural
language understanding. The meaning of a word is taken to be the entities,
predications, presuppositions, and potential inferences that it adds to an
ongoing situation. As words compose, the minimal model in the situation evolves
to limit and direct inference. At this point we have developed our
computational architecture and implemented it on real text. Our focus has been
on proving the feasibility of our design.
- Abstract(参考訳): 我々は最近、背景知識から推論をマーシャリングして深い自然言語理解を促進する、より効率的で効率的な方法を開発するプロジェクトを開始した。
単語の意味は、それが進行中の状況に付加する実体、述語、前提、潜在的な推論であると考えられている。
単語を構成するとき、状況の最小限のモデルは、制限と直接推論へと進化する。
この時点で我々は計算アーキテクチャを開発し、実際のテキスト上に実装した。
私たちの焦点は、設計の実現可能性を証明することです。
関連論文リスト
- Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
複雑な問題に対処するために, LLM の反応性を向上し, 活用するための新しいアプローチを提案する。
我々は,大規模言語モデルの強みと構造的意味表現を組み合わせた,多モーダルで知識を付加した意味の形式表現を作成する。
非構造化言語モデルと形式的意味構造とのギャップを埋めることで、自然言語理解と推論における複雑な問題に対処するための新たな道を開く。
論文 参考訳(メタデータ) (2024-11-19T17:23:55Z) - Predictive Simultaneous Interpretation: Harnessing Large Language Models for Democratizing Real-Time Multilingual Communication [0.0]
本稿では,話者発話を予測し,木のような構造で複数の可能性を拡張することによって,リアルタイム翻訳を生成する新しいアルゴリズムを提案する。
我々の理論的分析は、実証的な例によって支持されており、このアプローチが最小のレイテンシでより自然で流動的な翻訳につながることを示唆している。
論文 参考訳(メタデータ) (2024-07-02T13:18:28Z) - Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic [51.967603572656266]
我々は,分解包含を注釈付けするための一貫した理論的なアプローチを導入する。
我々の新しいデータセットRDTEは、前回の分解エンターメントデータセットよりもかなり高い内部整合性(+9%)を持つことがわかった。
また,RDTE による知識蒸留によるエンテーメント分類器の訓練や,エンテーメントツリー推論エンジンへの導入により,精度と検証精度が向上することが確認された。
論文 参考訳(メタデータ) (2024-02-22T18:55:17Z) - Punctuation Restoration Improves Structure Understanding without
Supervision [6.4736137270915215]
学習目的としての句読点復元は,構造関連タスクにおける内外分布性能を向上させることを示す。
句読解は、構造理解を改善し、自然言語のより堅牢な構造認識表現を得ることができる効果的な学習目的である。
論文 参考訳(メタデータ) (2024-02-13T11:22:52Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Language with Vision: a Study on Grounded Word and Sentence Embeddings [6.231247903840833]
視覚における接地言語は、認知的に妥当な単語と文表現の構築を目指す研究の活発な分野である。
本研究では,事前学習した単語埋め込みのための基礎計算モデルを提案する。
本モデルは,テキスト埋め込みを視覚情報と整合させることにより,言語と視覚の相互作用を効果的にバランスさせる。
論文 参考訳(メタデータ) (2022-06-17T15:04:05Z) - Dependency Induction Through the Lens of Visual Perception [81.91502968815746]
本稿では,単語の具体性を利用した教師なし文法帰納モデルと,構成的視覚に基づく構成的文法を共同学習する手法を提案する。
実験により,提案した拡張は,文法的サイズが小さい場合でも,現在最先端の視覚的接地モデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-09-20T18:40:37Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - (Re)construing Meaning in NLP [15.37817898307963]
本研究では,情報伝達のコンセプト化やコンストラクションの異なる方法に,表現方法が反映されていることを示す。
提案手法は,NLPにおける理論的,実践的な作業に対して,コンストラクチュアルからの洞察がどのような影響を及ぼすかを示す。
論文 参考訳(メタデータ) (2020-05-18T21:21:34Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
このようなモチベーションを満たすために,セマンティックス対応推論ネットワーク(SAIN)を提案する。
SAINの推論モジュールは、明示的な文脈的セマンティクスを補完的な入力として、セマンティクス上の一連の推論ステップを可能にする。
本モデルでは,機械読解や自然言語推論など11タスクの大幅な改善を実現している。
論文 参考訳(メタデータ) (2020-04-28T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。