Energy-Efficient Real-Time Heart Monitoring on Edge-Fog-Cloud
Internet-of-Medical-Things
- URL: http://arxiv.org/abs/2112.07901v1
- Date: Wed, 15 Dec 2021 05:42:20 GMT
- Title: Energy-Efficient Real-Time Heart Monitoring on Edge-Fog-Cloud
Internet-of-Medical-Things
- Authors: Berken Utku Demirel, Islam Abdelsalam Bayoumy, Mohammad Abdullah Al
Faruque
- Abstract summary: We present a novel and energy-efficient methodology for continuously monitoring the heart for low-power wearable devices.
The proposed methodology is composed of three different layers: 1) a Noise/Artifact detection layer to grade the quality of the ECG signals; 2) a Normal/Abnormal beat classification layer to detect anomalies in the ECG signals; and 3) an Abnormal beat classification layer to detect diseases from ECG signals.
Our methodology reaches an accuracy of 99.2% on the well-known MIT-BIH Arrhythmia dataset.
- Score: 4.927511651631258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent developments in wearable devices and the Internet of Medical
Things (IoMT) allow real-time monitoring and recording of electrocardiogram
(ECG) signals. However, continuous monitoring of ECG signals is challenging in
low-power wearable devices due to energy and memory constraints. Therefore, in
this paper, we present a novel and energy-efficient methodology for
continuously monitoring the heart for low-power wearable devices. The proposed
methodology is composed of three different layers: 1) a Noise/Artifact
detection layer to grade the quality of the ECG signals; 2) a Normal/Abnormal
beat classification layer to detect the anomalies in the ECG signals, and 3) an
Abnormal beat classification layer to detect diseases from ECG signals.
Moreover, a distributed multi-output Convolutional Neural Network (CNN)
architecture is used to decrease the energy consumption and latency between the
edge-fog/cloud. Our methodology reaches an accuracy of 99.2% on the well-known
MIT-BIH Arrhythmia dataset. Evaluation on real hardware shows that our
methodology is suitable for devices having a minimum RAM of 32KB. Moreover, the
proposed methodology achieves $7\times$ more energy efficiency compared to
state-of-the-art works.
Related papers
- TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Energy-Efficient Tree-Based EEG Artifact Detection [17.085570466000906]
In epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological similarity in both amplitude and frequency.
In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform.
arXiv Detail & Related papers (2022-04-19T12:57:26Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts.
GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data.
We propose a novel Conditional Generative Adrial Network to simultaneously generate ECG signals for different categories and detect cardiac abnormalities.
arXiv Detail & Related papers (2021-07-16T02:53:14Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals.
Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis.
arXiv Detail & Related papers (2020-11-12T04:20:56Z) - Electroencephalography signal processing based on textural features for
monitoring the driver's state by a Brain-Computer Interface [3.613072342189595]
We investigate a textural processing method as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system.
The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data.
Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement.
arXiv Detail & Related papers (2020-10-13T14:16:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.