論文の概要: MissMarple : A Novel Socio-inspired Feature-transfer Learning Deep
Network for Image Splicing Detection
- arxiv url: http://arxiv.org/abs/2112.08018v1
- Date: Wed, 15 Dec 2021 10:32:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-16 13:58:21.492062
- Title: MissMarple : A Novel Socio-inspired Feature-transfer Learning Deep
Network for Image Splicing Detection
- Title(参考訳): MissMarple : 画像スプライシング検出のための社会的な特徴伝達学習深層ネットワーク
- Authors: Angelina L. Gokhale, Dhanya Pramod, Sudeep D. Thepade, Ravi Kulkarni
- Abstract要約: 本稿では,画像スプライシング検出のための,社会にインスパイアされた畳み込みニューラルネットワーク(CNN)の深層学習モデルを提案する。
粗い画像領域からの学習は、視覚的に知覚できない微細な画像偽造物の検出を改善することができるという前提に基づいて、MissMarpleと呼ばれるモデルが特徴伝達学習を含む双子のCNNネットワークである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we propose a novel socio-inspired convolutional neural network
(CNN) deep learning model for image splicing detection. Based on the premise
that learning from the detection of coarsely spliced image regions can improve
the detection of visually imperceptible finely spliced image forgeries, the
proposed model referred to as, MissMarple, is a twin CNN network involving
feature-transfer learning. Results obtained from training and testing the
proposed model using the benchmark datasets like Columbia splicing, WildWeb,
DSO1 and a proposed dataset titled AbhAS consisting of realistic splicing
forgeries revealed improvement in detection accuracy over the existing deep
learning models.
- Abstract(参考訳): 本稿では,画像スプライシング検出のための,社会にインスパイアされた畳み込みニューラルネットワーク(CNN)深層学習モデルを提案する。
粗いスプライシング画像領域の検出から学習することで、視覚的に知覚できない細かなスプライシング画像のフォージェリーの検出を改善するという前提に基づいて、MissMarpleと呼ばれるモデルが特徴伝達学習を含む双子のCNNネットワークである。
columbia splicing、wildweb、dso1などのベンチマークデータセットと、現実的なスプライシングフォージからなるabhasというタイトルのデータセットを用いて、提案モデルをトレーニングおよびテストした結果、既存のディープラーニングモデルよりも検出精度が向上していることが判明した。
関連論文リスト
- Gradient-Free Supervised Learning using Spike-Timing-Dependent Plasticity for Image Recognition [3.087000217989688]
スパイキングニューラルネットワークにおける教師あり学習へのアプローチは、画像認識のためのスパイクタイピング依存の可塑性と組み合わせて、勾配のない手法を用いて提示される。
提案するネットワークアーキテクチャは、複数の層にスケーラブルであり、より複雑で深いSNNモデルの開発を可能にする。
論文 参考訳(メタデータ) (2024-10-21T21:32:17Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans [2.696776905220987]
従来のディープラーニングフレームワークは、CT画像のスライス数や解像度の変化によって互換性の問題に直面する。
この制限に対処するために,各CTデータセットに対して新しいスライス選択法を提案する。
上記の方法に加えて、様々な高性能分類モデルについて検討し、最終的には有望な結果を得る。
論文 参考訳(メタデータ) (2023-03-15T09:52:28Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - SalFBNet: Learning Pseudo-Saliency Distribution via Feedback
Convolutional Networks [8.195696498474579]
本稿では,サリエンシ検出のためのフィードバック再帰的畳み込みフレームワーク(SalFBNet)を提案する。
大規模Pseudo-Saliencyデータセットを作成し、唾液度検出におけるデータ不足の問題を軽減する。
論文 参考訳(メタデータ) (2021-12-07T14:39:45Z) - VisGraphNet: a complex network interpretation of convolutional neural
features [6.50413414010073]
ニューラルネットワークの特徴マップをモデル化するための可視性グラフの提案と検討を行う。
この研究は、元のデータよりもこれらのグラフによって提供される別の視点によって動機付けられている。
論文 参考訳(メタデータ) (2021-08-27T20:21:04Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。