論文の概要: Leveraging Image-based Generative Adversarial Networks for Time Series
Generation
- arxiv url: http://arxiv.org/abs/2112.08060v2
- Date: Thu, 31 Aug 2023 12:41:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 21:39:16.326748
- Title: Leveraging Image-based Generative Adversarial Networks for Time Series
Generation
- Title(参考訳): 時系列生成のための画像ベース生成広告ネットワークの活用
- Authors: Justin Hellermann, Stefan Lessmann
- Abstract要約: XIRP(Extended Intertemporal Return Plot)という時系列の2次元画像表現を提案する。
提案手法は, 時間間時系列のダイナミクスをスケール不変かつ可逆的に捉え, トレーニング時間を短縮し, サンプル品質を向上させる。
- 参考スコア(独自算出の注目度): 4.541582055558865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models for images have gained significant attention in computer
vision and natural language processing due to their ability to generate
realistic samples from complex data distributions. To leverage the advances of
image-based generative models for the time series domain, we propose a
two-dimensional image representation for time series, the Extended
Intertemporal Return Plot (XIRP). Our approach captures the intertemporal time
series dynamics in a scale-invariant and invertible way, reducing training time
and improving sample quality. We benchmark synthetic XIRPs obtained by an
off-the-shelf Wasserstein GAN with gradient penalty (WGAN-GP) to other image
representations and models regarding similarity and predictive ability metrics.
Our novel, validated image representation for time series consistently and
significantly outperforms a state-of-the-art RNN-based generative model
regarding predictive ability. Further, we introduce an improved stochastic
inversion to substantially improve simulation quality regardless of the
representation and provide the prospect of transfer potentials in other
domains.
- Abstract(参考訳): 画像生成モデルは、複雑なデータ分布から現実的なサンプルを生成する能力により、コンピュータビジョンと自然言語処理に大きな注目を集めている。
時系列領域における画像ベース生成モデルの進歩を活用するために,時系列の2次元画像表現である拡張時空間回帰プロット(XIRP)を提案する。
提案手法は,時間間時系列のダイナミクスをスケール不変かつ可逆的に捉え,トレーニング時間を短縮し,サンプル品質を向上させる。
我々は,WGAN-GPを用いた市販のワッサースタインGANによる合成XIRPを,類似性や予測能力の指標に関する他の画像表現やモデルと比較した。
時系列の検証画像表現は, 予測能力に関する最先端のRNNベース生成モデルにおいて, 連続的かつ顕著に優れる。
さらに,表現によらずシミュレーション品質が大幅に向上する確率的インバージョンを導入し,他の領域における伝達ポテンシャルの展望を提供する。
関連論文リスト
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
遅延ベース画像生成モデルは、画像生成タスクにおいて顕著な成功を収めた。
同じ遅延空間を共有するにもかかわらず、自己回帰モデルは画像生成において LDM や MIM よりもかなり遅れている。
本稿では,画像生成モデルのための遅延空間を安定化する,単純だが効果的な離散画像トークン化手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T12:13:17Z) - Sequential Posterior Sampling with Diffusion Models [15.028061496012924]
条件付き画像合成における逐次拡散後サンプリングの効率を向上させるため,遷移力学をモデル化する新しい手法を提案する。
本研究では,高フレームレート心エコー画像の現実的データセットに対するアプローチの有効性を実証する。
提案手法は,画像の拡散モデルとリアルタイム推論を必要とする他の領域における拡散モデルのリアルタイム適用の可能性を開く。
論文 参考訳(メタデータ) (2024-09-09T07:55:59Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - TcGAN: Semantic-Aware and Structure-Preserved GANs with Individual
Vision Transformer for Fast Arbitrary One-Shot Image Generation [11.207512995742999]
画像の内部パッチから学習する生成的敵ネットワークを持つワンショット画像生成(OSG)は、世界中で注目を集めている。
本稿では,既存のワンショット画像生成手法の欠点を克服するために,個々の視覚変換器を用いた構造保存方式TcGANを提案する。
論文 参考訳(メタデータ) (2023-02-16T03:05:59Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
我々は,高度にアンダーサンプリングされた測定値の再構成を行うために,k-spaceとDu-al-Domainコラボレーティブユニバーサル生成モデル(DD-UGM)を提案する。
より正確には、画像領域とk空間領域の両方の先行成分を普遍的な生成モデルで抽出し、これらの先行成分を適応的に処理し、より高速に処理する。
論文 参考訳(メタデータ) (2022-12-15T03:04:48Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。