Joint Demand Prediction for Multimodal Systems: A Multi-task
Multi-relational Spatiotemporal Graph Neural Network Approach
- URL: http://arxiv.org/abs/2112.08078v1
- Date: Wed, 15 Dec 2021 12:35:35 GMT
- Title: Joint Demand Prediction for Multimodal Systems: A Multi-task
Multi-relational Spatiotemporal Graph Neural Network Approach
- Authors: Yuebing Liang and Guan Huang and Zhan Zhao
- Abstract summary: This study proposes a multi-relational graph neural network (MRGNN) for multimodal demand prediction.
A multi-relational graph neural network (MRGNN) is introduced to capture cross-mode heterogeneous spatial dependencies.
Experiments are conducted using real-world datasets from New York City.
- Score: 7.481812882780837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic demand prediction is crucial for the efficient operation and
management of urban transportation systems. Extensive research has been
conducted on single-mode demand prediction, ignoring the fact that the demands
for different transportation modes can be correlated with each other. Despite
some recent efforts, existing approaches to multimodal demand prediction are
generally not flexible enough to account for multiplex networks with diverse
spatial units and heterogeneous spatiotemporal correlations across different
modes. To tackle these issues, this study proposes a multi-relational
spatiotemporal graph neural network (ST-MRGNN) for multimodal demand
prediction. Specifically, the spatial dependencies across modes are encoded
with multiple intra- and inter-modal relation graphs. A multi-relational graph
neural network (MRGNN) is introduced to capture cross-mode heterogeneous
spatial dependencies, consisting of generalized graph convolution networks to
learn the message passing mechanisms within relation graphs and an
attention-based aggregation module to summarize different relations. We further
integrate MRGNNs with temporal gated convolution layers to jointly model
heterogeneous spatiotemporal correlations. Extensive experiments are conducted
using real-world subway and ride-hailing datasets from New York City, and the
results verify the improved performance of our proposed approach over existing
methods across modes. The improvement is particularly large for demand-sparse
locations. Further analysis of the attention mechanisms of ST-MRGNN also
demonstrates its good interpretability for understanding cross-mode
interactions.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting [10.392021668859272]
This paper proposes Conjoint Spatio-Temporal graph neural network (abbreviated as COOL), which models heterogeneous graphs from prior and posterior information to conjointly capture high-order-temporal relationships.
To capture diverse transitional properties to enhance traffic forecasting, we propose a conjoint-attention decoder that models diverse temporal patterns from both multi-rank and multi-scale views.
arXiv Detail & Related papers (2024-03-02T04:30:09Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
We introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them.
We leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data.
The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks.
arXiv Detail & Related papers (2023-11-21T14:24:21Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.