Dense Video Captioning Using Unsupervised Semantic Information
- URL: http://arxiv.org/abs/2112.08455v2
- Date: Mon, 06 Jan 2025 14:21:22 GMT
- Title: Dense Video Captioning Using Unsupervised Semantic Information
- Authors: Valter Estevam, Rayson Laroca, Helio Pedrini, David Menotti,
- Abstract summary: We introduce a method to learn unsupervised semantic visual information based on the premise that complex events can be decomposed into simpler events.
We learn a dense representation by encoding the co-occurrence probability matrix for the codebook entries.
- Score: 2.8712233051808957
- License:
- Abstract: We introduce a method to learn unsupervised semantic visual information based on the premise that complex events can be decomposed into simpler events and that these simple events are shared across several complex events. We first employ a clustering method to group representations producing a visual codebook. Then, we learn a dense representation by encoding the co-occurrence probability matrix for the codebook entries. This representation leverages the performance of the dense video captioning task in a scenario with only visual features. For example, we replace the audio signal in the BMT method and produce temporal proposals with comparable performance. Furthermore, we concatenate the visual representation with our descriptor in a vanilla transformer method to achieve state-of-the-art performance in the captioning subtask compared to the methods that explore only visual features, as well as a competitive performance with multi-modal methods. Our code is available at https://github.com/valterlej/dvcusi.
Related papers
- Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
arXiv Detail & Related papers (2024-10-07T17:59:48Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
We introduce a new decoding paradigm, underlinelabel sunderlineemunderlineantic-based underlineprojection (LEAP)
LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings.
To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function.
arXiv Detail & Related papers (2024-07-11T01:57:08Z) - Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval [9.899703354116962]
Dense video captioning aims to automatically localize and caption all events within untrimmed video.
We propose a novel framework inspired by the cognitive information processing of humans.
Our model utilizes external memory to incorporate prior knowledge.
arXiv Detail & Related papers (2024-04-11T09:58:23Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning [7.908887001497406]
We propose a novel model with cross-modal perception for unsupervised highlight detection.
The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task.
The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-14T13:52:03Z) - Visual Commonsense-aware Representation Network for Video Captioning [84.67432867555044]
We propose a simple yet effective method, called Visual Commonsense-aware Representation Network (VCRN) for video captioning.
Our method reaches state-of-the-art performance, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-11-17T11:27:15Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
This paper presents a simple method to efficiently adapt one pre-trained visual-language model to novel tasks with minimal training.
To bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features.
arXiv Detail & Related papers (2021-12-08T18:58:16Z) - End-to-End Dense Video Captioning with Parallel Decoding [53.34238344647624]
We propose a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC)
PDVC precisely segments the video into a number of event pieces under the holistic understanding of the video content.
experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results.
arXiv Detail & Related papers (2021-08-17T17:39:15Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
Self-supervised visual representation learning is key for efficient video analysis.
Recent success in learning image representations suggests contrastive learning is a promising framework to tackle this challenge.
We introduce a cooperative variant of contrastive learning to utilize complementary information across views.
arXiv Detail & Related papers (2021-04-30T05:46:02Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
We propose a proxy task to learn visual representations over image-caption pairs.
ICMLM consists in predicting masked words in captions by relying on visual cues.
Our experiments confirm that image captions can be leveraged to inject global and localized semantic information into visual representations.
arXiv Detail & Related papers (2020-08-04T08:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.