Dense Video Captioning Using Unsupervised Semantic Information
- URL: http://arxiv.org/abs/2112.08455v2
- Date: Mon, 06 Jan 2025 14:21:22 GMT
- Title: Dense Video Captioning Using Unsupervised Semantic Information
- Authors: Valter Estevam, Rayson Laroca, Helio Pedrini, David Menotti,
- Abstract summary: We introduce a method to learn unsupervised semantic visual information based on the premise that complex events can be decomposed into simpler events.<n>We learn a dense representation by encoding the co-occurrence probability matrix for the codebook entries.
- Score: 2.8712233051808957
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a method to learn unsupervised semantic visual information based on the premise that complex events can be decomposed into simpler events and that these simple events are shared across several complex events. We first employ a clustering method to group representations producing a visual codebook. Then, we learn a dense representation by encoding the co-occurrence probability matrix for the codebook entries. This representation leverages the performance of the dense video captioning task in a scenario with only visual features. For example, we replace the audio signal in the BMT method and produce temporal proposals with comparable performance. Furthermore, we concatenate the visual representation with our descriptor in a vanilla transformer method to achieve state-of-the-art performance in the captioning subtask compared to the methods that explore only visual features, as well as a competitive performance with multi-modal methods. Our code is available at https://github.com/valterlej/dvcusi.
Related papers
- Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
arXiv Detail & Related papers (2024-10-07T17:59:48Z) - SITAR: Semi-supervised Image Transformer for Action Recognition [20.609596080624662]
This paper addresses video action recognition in a semi-supervised setting by leveraging only a handful of labeled videos.
We capitalize on the vast pool of unlabeled samples and employ contrastive learning on the encoded super images.
Our method demonstrates superior performance compared to existing state-of-the-art approaches for semi-supervised action recognition.
arXiv Detail & Related papers (2024-09-04T17:49:54Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
We introduce a new decoding paradigm, underlinelabel sunderlineemunderlineantic-based underlineprojection (LEAP)
LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings.
To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function.
arXiv Detail & Related papers (2024-07-11T01:57:08Z) - Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval [9.899703354116962]
Dense video captioning aims to automatically localize and caption all events within untrimmed video.
We propose a novel framework inspired by the cognitive information processing of humans.
Our model utilizes external memory to incorporate prior knowledge.
arXiv Detail & Related papers (2024-04-11T09:58:23Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning [7.908887001497406]
We propose a novel model with cross-modal perception for unsupervised highlight detection.
The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task.
The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-14T13:52:03Z) - Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment [10.567291051485194]
We propose ZeroTA, a novel method for dense video captioning in a zero-shot manner.
Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time.
arXiv Detail & Related papers (2023-07-05T23:01:26Z) - Visual Commonsense-aware Representation Network for Video Captioning [84.67432867555044]
We propose a simple yet effective method, called Visual Commonsense-aware Representation Network (VCRN) for video captioning.
Our method reaches state-of-the-art performance, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-11-17T11:27:15Z) - TVLT: Textless Vision-Language Transformer [89.31422264408002]
We present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs.
TVLT attains performance comparable to its text-based counterpart, on various multimodal tasks.
Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals.
arXiv Detail & Related papers (2022-09-28T15:08:03Z) - CenterCLIP: Token Clustering for Efficient Text-Video Retrieval [67.21528544724546]
In CLIP, the essential visual tokenization process, which produces discrete visual token sequences, generates many homogeneous tokens due to the redundancy nature of consecutive frames in videos.
This significantly increases computation costs and hinders the deployment of video retrieval models in web applications.
In this paper, we design a multi-segment token clustering algorithm to find the most representative tokens and drop the non-essential ones.
arXiv Detail & Related papers (2022-05-02T12:02:09Z) - Frame-wise Action Representations for Long Videos via Sequence
Contrastive Learning [44.412145665354736]
We introduce a novel contrastive action representation learning framework to learn frame-wise action representations.
Inspired by the recent progress of self-supervised learning, we present a novel sequence contrastive loss (SCL) applied on two correlated views.
Our approach also shows outstanding performance on video alignment and fine-grained frame retrieval tasks.
arXiv Detail & Related papers (2022-03-28T17:59:54Z) - Show Me What and Tell Me How: Video Synthesis via Multimodal
Conditioning [36.85533835408882]
This work presents a multimodal video generation framework that benefits from text and images provided jointly or separately.
We propose a new video token trained with self-learning and an improved mask-prediction algorithm for sampling video tokens.
Our framework can incorporate various visual modalities, such as segmentation masks, drawings, and partially occluded images.
arXiv Detail & Related papers (2022-03-04T21:09:13Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
This paper presents a simple method to efficiently adapt one pre-trained visual-language model to novel tasks with minimal training.
To bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features.
arXiv Detail & Related papers (2021-12-08T18:58:16Z) - End-to-End Dense Video Captioning with Parallel Decoding [53.34238344647624]
We propose a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC)
PDVC precisely segments the video into a number of event pieces under the holistic understanding of the video content.
experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results.
arXiv Detail & Related papers (2021-08-17T17:39:15Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
Self-supervised visual representation learning is key for efficient video analysis.
Recent success in learning image representations suggests contrastive learning is a promising framework to tackle this challenge.
We introduce a cooperative variant of contrastive learning to utilize complementary information across views.
arXiv Detail & Related papers (2021-04-30T05:46:02Z) - Composable Augmentation Encoding for Video Representation Learning [94.2358972764708]
We focus on contrastive methods for self-supervised video representation learning.
A common paradigm in contrastive learning is to construct positive pairs by sampling different data views for the same instance, with different data instances as negatives.
We propose an 'augmentation aware' contrastive learning framework, where we explicitly provide a sequence of augmentation parameterisations.
We show that our method encodes valuable information about specified spatial or temporal augmentation, and in doing so also achieve state-of-the-art performance on a number of video benchmarks.
arXiv Detail & Related papers (2021-04-01T16:48:53Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
We propose a proxy task to learn visual representations over image-caption pairs.
ICMLM consists in predicting masked words in captions by relying on visual cues.
Our experiments confirm that image captions can be leveraged to inject global and localized semantic information into visual representations.
arXiv Detail & Related papers (2020-08-04T08:04:16Z) - Dynamic Graph Representation Learning for Video Dialog via Multi-Modal
Shuffled Transformers [89.00926092864368]
We present a semantics-controlled multi-modal shuffled Transformer reasoning framework for the audio-visual scene aware dialog task.
We also present a novel dynamic scene graph representation learning pipeline that consists of an intra-frame reasoning layer producing-semantic graph representations for every frame.
Our results demonstrate state-of-the-art performances on all evaluation metrics.
arXiv Detail & Related papers (2020-07-08T02:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.