Enhanced phonon blockade in a weakly-coupled hybrid system via
mechanical parametric amplification
- URL: http://arxiv.org/abs/2112.08562v1
- Date: Thu, 16 Dec 2021 01:50:08 GMT
- Title: Enhanced phonon blockade in a weakly-coupled hybrid system via
mechanical parametric amplification
- Authors: Yan Wang, Jin-Lei Wu, Jin-Xuan Han, Yan Xia, Yong-Yuan Jiang, Jie Song
- Abstract summary: We show how to achieve strong phonon blockade (PB) in a hybrid spin-mechanical system in the weak-coupling regime.
Our work opens up prospects for the implementation of an efficient single-phonon source, with potential applications in quantum phononics and phononic quantum networks.
- Score: 11.798443611441726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose how to achieve strong phonon blockade (PB) in a hybrid
spin-mechanical system in the weak-coupling regime. We demonstrate the
implementation of magnetically-induced two-phonon interactions between a
mechanical cantilever resonator and an embedded nitrogen-vacancy (NV) center,
which, combined with parametric amplification of the mechanical motion,
produces significantly enlarged anharmonicity in the eigenenergy spectrum. In
the weak-driving regime, we show that strong PB appears in the hybrid system
along with a large mean phonon number, even in the presence of strong
mechanical dissipation. We also show flexible tunability of phonon statistics
by controlling the strength of mechanical parametric amplification. Our work
opens up prospects for the implementation of an efficient single-phonon source,
with potential applications in quantum phononics and phononic quantum networks.
Related papers
- Optomechanical entanglement induced by backward stimulated Brillouin scattering [0.0]
We propose a scheme to generate robust optomechanical entanglement.
The generated entanglement is robust enough against thermal fluctuation.
Such a generated entangled states can be used for quantum information processing, quantum sensing, and quantum computing.
arXiv Detail & Related papers (2024-05-29T20:17:06Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Feedback Enhanced Phonon Lasing of a Microwave Frequency Resonator [1.027640127328754]
We propose and demonstrate a feedback technique for increasing the amplitude of self-oscillating mechanical resonators.
This technique will advance applications dependent on high dynamic mechanical stress, such as coherent spin-phonon coupling.
arXiv Detail & Related papers (2023-08-17T18:00:03Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Combination of dissipative and dispersive coupling in the cavity
optomechanical systems [77.34726150561087]
An analysis is given for the Fabry-Perot cavity having a combination of dissipative and dispersive optomechanical coupling.
It is established that the combined coupling leads to optical rigidity.
arXiv Detail & Related papers (2022-01-24T19:25:39Z) - Strong single-photon optomechanical coupling in a hybrid quantum system [2.5611225024281166]
We propose a hybrid quantum system consisting of a nanobeam (phonons) coupled to a spin ensemble and a cavity (photons) to overcome it.
Our proposed approach can be used to study quantum nonlinear and nonclassical effects in weakly coupled optomechanical systems.
arXiv Detail & Related papers (2021-05-12T00:51:36Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Energy transfer in $N$-component nanosystems enhanced by pulse-driven
vibronic many-body entanglement [41.94295877935867]
We show that pulses of intermediate duration generate highly entangled vibronic states that spread multiple excitons -- and hence energy -- maximally within the system.
The underlying pulse-generated vibronic entanglement increases in strength and robustness as $N$ increases.
arXiv Detail & Related papers (2017-08-10T17:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.