論文の概要: Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource
- arxiv url: http://arxiv.org/abs/2112.08823v1
- Date: Thu, 16 Dec 2021 12:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-04 09:39:52.986527
- Title: Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource
- Title(参考訳): 最小資源をもつ論理量子ビットの誤差耐性幾何量子制御
- Authors: Tao Chen, Zheng-Yuan Xue, and Z. D. Wang
- Abstract要約: 本稿では,デコヒーレンスフリーサブスペース符号化を用いた新しい高速かつロバストな幾何学的スキームを提案し,超伝導量子回路への物理実装を提案する。
提案手法は,将来の大規模量子計算に光を当てる論理量子ビット制御における誤り抑制手法を両立させることができる。
- 参考スコア(独自算出の注目度): 4.354697470999286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric quantum computation offers a practical strategy toward robust
quantum computation due to its inherently error tolerance. However, the
rigorous geometric conditions lead to complex and/or error-disturbed quantum
controls, especially for logical qubits that involve more physical qubits,
whose error tolerance is effective in principle though, their experimental
demonstration is still demanding. Thus, how to best simplify the needed control
and manifest its full advantage has become the key to widespread applications
of geometric quantum computation. Here we propose a new fast and robust
geometric scheme, with the decoherence-free-subspace encoding, and present its
physical implementation on superconducting quantum circuits, where we only
utilize the experimentally demonstrated parametrically tunable coupling to
achieve high-fidelity geometric control over logical qubits. Numerical
simulation verifies that it can efficiently combine the error tolerance from
both the geometric phase and logical-qubit encoding, displaying our
gate-performance superiority over the conventional dynamical one without
encoding, in terms of both gate fidelity and robustness. Therefore, our scheme
can consolidate both error suppression methods for logical-qubit control, which
sheds light on the future large-scale quantum computation.
- Abstract(参考訳): 幾何学的量子計算は、本質的にエラー耐性のため、ロバストな量子計算に対する実用的な戦略を提供する。
しかし、厳密な幾何学的条件は、特により物理量子ビットを含む論理量子ビットに対して、複雑で/または誤りに乱れた量子制御をもたらす。
このように、必要な制御を最大限に単純化し、その完全な優位性を示す方法が、幾何学的量子計算の広範な応用の鍵となっている。
本稿では,デコヒーレンスフリー部分空間符号化を用いた新しい高速でロバストな幾何スキームを提案し,その物理的実装として超伝導量子回路を提案する。
数値シミュレーションは、幾何学的位相と論理量子ビットのエンコーディングの両方からエラー耐性を効率的に組み合わせ、門の忠実性とロバスト性の両方の観点から、従来の動的エンコーディングよりもゲート性能が優れていることを検証している。
そこで本手法は,将来の大規模量子計算に光を当てる論理量子ビット制御における誤り抑制手法を両立させることができる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
一般的な動的補正手法と組み合わせた有効幾何スキームを提案する。
提案手法は,大規模なフォールトトレラント量子計算を探索するための有望な方法である。
論文 参考訳(メタデータ) (2023-02-08T16:18:09Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Experimental implementation of universal holonomic quantum computation
on solid-state spins with optimal control [12.170408456188934]
室温でのダイヤモンド中の固体スピンを用いた非断熱ホロノミック量子計算を実験的に実装した。
従来の幾何学的手法と比較して、ホロノミックな単一量子ビットと2量子ビットの量子論理ゲートの普遍的な集合の忠実度が向上する。
この研究は、現実的なシステムにおけるフォールトトレラントでスケーラブルな量子計算に向けて重要な一歩を踏み出す。
論文 参考訳(メタデータ) (2021-02-18T09:02:02Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
本研究では,空間雑音相関が論理量子ビットのリッチで直観的な動的挙動を生じさせることを示す。
この作業は論理キュービットの実験的な実装をガイドし、ベンチマークするのに役立ちます。
論文 参考訳(メタデータ) (2020-12-14T19:51:19Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
超伝導回路上での普遍ホロノミック量子ゲートの簡易実装を提案する。
提案手法は従来よりも堅牢であり,スケーラブルなフォールトトレラント量子計算のための代替戦略として有望なものである。
論文 参考訳(メタデータ) (2020-04-23T13:26:18Z) - High-fidelity and Robust Geometric Quantum Gates that Outperform
Dynamical Ones [5.781900408390438]
本稿では,時間-最適制御手法を統合した幾何量子計算の一般的な枠組みを提案する。
我々の手法は、スケーラブルなフォールトトレラントな固体量子計算への有望な代替手段を提供する。
論文 参考訳(メタデータ) (2020-01-16T13:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。