Digital signatures with Quantum Candies
- URL: http://arxiv.org/abs/2112.09395v1
- Date: Fri, 17 Dec 2021 09:03:14 GMT
- Title: Digital signatures with Quantum Candies
- Authors: Tal Mor, Roman Shapira, Guy Shemesh
- Abstract summary: We show how the "qandy model" can be used to describe three quantum digital signatures protocols.
This paper provides an important and potentially practical example of the power of "superpositionless" quantum information processing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum candies (qandies) is a pedagogical simple model which describes many
concepts from quantum information processing (QIP) intuitively, without the
need to understand or make use of superpositions, and without the need of using
complex algebra. One of the topics in quantum cryptography which gains research
attention in recent years is quantum digital signatures (QDS), involving
protocols to securely sign classical bits using quantum methods. In this paper
we show how the "qandy model" can be used to describe three QDS protocols, in
order to provide an important and potentially practical example of the power of
"superpositionless" quantum information processing, for individuals without
background knowledge in the field.
Related papers
- Formal verification of higher dimensional quantum protocols [0.0]
We present our preliminary results in extending the theory of behavioural equivalence in CQP to verify higher dimensional quantum protocols using qudits.
This is a work-in-progress and we present our preliminary results in extending the theory of behavioural equivalence in CQP to verify higher dimensional quantum protocols using qudits.
arXiv Detail & Related papers (2024-09-26T15:53:14Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Probably approximately correct quantum source coding [0.0]
Holevo's and Nayak's bounds give an estimate of the amount of classical information that can be stored in a quantum state.
We show two novel applications in quantum learning theory and delegated quantum computation with a purely classical client.
arXiv Detail & Related papers (2021-12-13T17:57:30Z) - LQP: The Dynamic Logic of Quantum Information [77.34726150561087]
This paper introduces a dynamic logic formalism for reasoning about information flow in composite quantum systems.
We present a finitary syntax, a relational semantics and a sound proof system for this logic.
As applications, we use our system to give formal correctness for the Teleportation protocol and for a standard Quantum Secret Sharing protocol.
arXiv Detail & Related papers (2021-10-04T12:20:23Z) - Quantum information and beyond -- with quantum candies [0.0]
We investigate, extend, and greatly expand here "quantum candies" (invented by Jacobs)
"quantum" candies describe some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement.
These demonstrations are done in an approachable manner, that can be explained to high-school students, without using the hard-to-grasp concept of superpositions and its mathematics.
arXiv Detail & Related papers (2021-09-30T16:05:33Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Candies and Quantum Cryptography [0.0]
We investigate, extend, and much expand here "quantum candies" (invented by Jacobs), a pedagogical model for intuitively describing some basic concepts in quantum information.
We explicitly demonstrate various additional quantum cryptography protocols using quantum candies in an approachable manner.
arXiv Detail & Related papers (2020-11-03T21:01:08Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.