論文の概要: Improving neural implicit surfaces geometry with patch warping
- arxiv url: http://arxiv.org/abs/2112.09648v1
- Date: Fri, 17 Dec 2021 17:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-20 16:01:06.671934
- Title: Improving neural implicit surfaces geometry with patch warping
- Title(参考訳): パッチワープによるニューラル暗黙表面形状の改善
- Authors: Fran\c{c}ois Darmon, B\'en\'edicte Bascle, Jean-Cl\'ement Devaux,
Pascal Monasse, Mathieu Aubry
- Abstract要約: これはニューラルネットワークによる高周波テクスチャの学習と描画が難しいことによるものだ、と私たちは主張する。
我々は、異なる視点で直接光一貫性項を標準のニューラルレンダリング最適化に追加することを提案する。
我々は、標準的なDTUおよびEPFLベンチマークでNeuralWarpと呼ばれるアプローチを評価し、両方のデータセットにおいて、教師なしの暗黙的表面再構成の状態を20%以上向上させることを示す。
- 参考スコア(独自算出の注目度): 12.106051690920266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural implicit surfaces have become an important technique for multi-view 3D
reconstruction but their accuracy remains limited. In this paper, we argue that
this comes from the difficulty to learn and render high frequency textures with
neural networks. We thus propose to add to the standard neural rendering
optimization a direct photo-consistency term across the different views.
Intuitively, we optimize the implicit geometry so that it warps views on each
other in a consistent way. We demonstrate that two elements are key to the
success of such an approach: (i) warping entire patches, using the predicted
occupancy and normals of the 3D points along each ray, and measuring their
similarity with a robust structural similarity (SSIM); (ii) handling visibility
and occlusion in such a way that incorrect warps are not given too much
importance while encouraging a reconstruction as complete as possible. We
evaluate our approach, dubbed NeuralWarp, on the standard DTU and EPFL
benchmarks and show it outperforms state of the art unsupervised implicit
surfaces reconstructions by over 20% on both datasets.
- Abstract(参考訳): 神経暗黙的表面はマルチビュー3d再構成の重要な技術となっているが、精度は限られている。
本稿では,ニューラルネットワークを用いた高頻度テクスチャの学習と描画が困難であることから,この問題を論じる。
そこで本研究では,標準のニューラルレンダリング最適化に,異なるビューにまたがる直接的フォトコンシスタンス項を追加することを提案する。
直感的には、暗黙の幾何学を最適化し、相互に一貫した方法で視点をゆがめる。
2つの要素がそのようなアプローチの成功の鍵であることを実証する。
(i)各線に沿った3d点の占有率と正規値の予測を用いてパッチ全体を反動させ、その類似性をロバストな構造類似性(ssim)で測定する。
(ii)不正確なワープがあまり重要でないように視認性や咬合を扱いながら、可能な限り完全な再構築を奨励する。
我々は、標準的なDTUおよびEPFLベンチマークでNeuralWarpと呼ばれるアプローチを評価し、両方のデータセットにおいて、教師なしの暗黙的表面再構成の状態を20%以上向上させることを示す。
関連論文リスト
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
微分可能放射場 eg NeRF を利用して、新しいビューレンダリングを生成するとともに、詳細な3次元表面を再構成する。
本研究では,SDFから放射場への射影を一様等間隔のアイコニカル正規化で定式化し,最適化することを考えると,光度重み付け係数を改良する。
提案する textitRaNeuS は,合成データと実データの両方で広く評価されている。
論文 参考訳(メタデータ) (2024-06-14T07:54:25Z) - Learning Robust Generalizable Radiance Field with Visibility and Feature
Augmented Point Representation [7.203073346844801]
本稿では、一般化可能なニューラル放射場(NeRF)のための新しいパラダイムを提案する。
本稿では、画像ベースレンダリングではなく、点ベースに基づく一般化可能なニューラルネットワークを構築するための第1のパラダイムを提案する。
我々のアプローチは、幾何的先行性によって鮮度を明示的にモデル化し、それらをニューラル特徴で拡張する。
論文 参考訳(メタデータ) (2024-01-25T17:58:51Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
本稿では、ビュー依存色とビュー非依存色を分離する2段階のトレーニングプロセスを提案し、さらに2つの新しい一貫性制約を活用して、余分な事前処理を必要とせず、詳細な再構成性能を向上させる。
合成および実世界のデータセットの実験は、事前推定誤差から干渉を減らす能力を示している。
論文 参考訳(メタデータ) (2023-09-18T13:05:23Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
マルチビューRGB画像から新しい3次元顔再構成法を提案する。
従来の3次元形態素モデルに基づく手法とは異なり,本手法は暗黙の表現を利用してリッチな幾何学的特徴を符号化する。
いくつかのベンチマークデータセットに対する実験結果から,提案手法は代替ベースラインよりも優れ,最先端の手法に比べて優れた顔再構成結果が得られることが示された。
論文 参考訳(メタデータ) (2021-12-05T07:02:53Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
表面形状を暗黙的に表現する最近の学習手法は、多視点3次元再構成の問題において顕著な結果を示している。
我々はこれらの制限を,数発のフル3次元頭部再構成の特定の問題に対処する。
暗黙の表現を用いて,数千個の不完全な生スキャンから3次元頭部形状モデルを学習する。
論文 参考訳(メタデータ) (2021-07-26T23:04:18Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
本稿では,3次元密度(深度,表面正規度)情報を表現操作に用いる新しいフレームワークを提案する。
既製の最先端3D再構成モデルを用いて深度を推定し,大規模RGB-Depthデータセットを作成する。
実験により,提案手法は競争ベースラインと既存の芸術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-09-30T17:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。