Light-induced topological phases in thin films of magnetically doped
topological insulators
- URL: http://arxiv.org/abs/2112.09958v1
- Date: Sat, 18 Dec 2021 16:16:23 GMT
- Title: Light-induced topological phases in thin films of magnetically doped
topological insulators
- Authors: S. Sajad Dabiri, Hosein Cheraghchi and Ali Sadeghi
- Abstract summary: thin films irradiated by a circularly polarized light undergo phase transition.
A quantum anomalous Hall insulator phase is induced purely by the light-induced mass term.
A novel phase, quantum pseudo-spin Hall insulator, emerges in the phase diagram leading to anisotropic helical edge states with zero total Chern number.
- Score: 2.6104700758143666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the photon-dressed electronic band structure of topological
insulator thin films which could be also doped doped by magnetic impurities in
response to an off-resonance time-periodic electromagnetic field. The thin
films irradiated by a circularly polarized light undergo phase transition, in a
driven system made by and a fascinating feature of distinct phases emerges in
the phase diagram depending on the parameters such as frequency, intensity and
polarization of the light. As a particular case, quantum anomalous Hall
insulator phase is induced purely by the light-induced mass term with no need
to any external magnetic field or even magnetization arising from the
doped-doping magnetic impurities. Moreover, a novel phase, quantum pseudo-spin
Hall insulator, emerges in the phase diagram leading to anisotropic helical
edge states with zero total Chern number. We verify these achievements in the
phase diagrams are supported by numerical calculations for a nanoribbon of the
thin film for which the edge mode behavior is observed at several points on the
phase diagram. The emergence of the mentioned topological phases and the edge
modes are further confirmed by both calculating the Hall conductivity by means
of the Kubo formula and the Chern number of each band. The effect of light
parameters on the Landau level fan diagram in the presence of a perpendicular
magnetic field indicates various topological phases occurring at higher Chern
numbers.
Related papers
- Diverging entanglement of critical magnons in easy-axis antiferromagnets [0.5910597773909121]
We study the instability of antiferromagnets with easy-axis anisotropy under a magnetic field.
Near the phase boundary, the entanglement between the sublattice magnons diverges due to the interplay among antiferromagnetic exchange interaction, anisotropy, and magnetic field.
arXiv Detail & Related papers (2024-11-04T18:00:03Z) - A Gallery of Soft Modes: Theory and Experiment at a Ferromagnetic Quantum Phase Transition [0.0]
We examine the low-energy excitations in the vicinity of the quantum critical point in LiHoF$_4$, a physical realization of the Transverse Field Ising Model.
Microwave spectroscopy in tunable loop-gap resonator structures identifies and characterizes the soft mode and higher-energy electronuclear states.
arXiv Detail & Related papers (2024-08-07T02:27:00Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Confined Meson Excitations in Rydberg-Atom Arrays Coupled to a Cavity
Field [0.0]
Confinement is a pivotal phenomenon in numerous models of high-energy and statistical physics.
In this study, we investigate the emergence of confined meson excitations within a one-dimensional system, comprising Rydberg-dressed atoms trapped and coupled to a cavity field.
We suggest a method for the photonic characterization of these confined excitations, utilizing homodyne detection and single-site imaging techniques to observe the localized particles.
arXiv Detail & Related papers (2023-12-28T22:18:27Z) - Quantum Phase Transitions in a Generalized Dicke Model [2.723809629055624]
We investigate a generalized Dicke model by introducing two interacting spin ensembles coupled with a single-mode bosonic field.
Ferromagnetic spin-spin interaction can significantly reduce the required spin-boson coupling strength to observe the superradiant phase.
To examine higher-order quantum effects beyond the mean-field contribution, we utilize the Holstein-Primakoff transformation.
arXiv Detail & Related papers (2023-10-29T11:00:56Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Engineering of topological phases in driven thin topological insulator:
Structure inversion asymmetry effect [0.0]
We investigate the effect of a high frequency electromagnetic field with both of circularly and linearly polarization, on the emergence of quantum phases on thin topological insulators.
We take our attention to the high frequency regime in which it is possible to consider an expansion for the Floquet Hamiltonian in terms of orders of 1/Omega.
Some phase transitions between quantum anomalous Hall insulator, quantum pseudospin Hall insulator, quantum spin Hall insulator and normal insulator can be induced by altering the aforementioned parameters of the system.
arXiv Detail & Related papers (2021-12-18T16:14:47Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.