An iterative clustering algorithm for the Contextual Stochastic Block
Model with optimality guarantees
- URL: http://arxiv.org/abs/2112.10467v1
- Date: Mon, 20 Dec 2021 12:04:07 GMT
- Title: An iterative clustering algorithm for the Contextual Stochastic Block
Model with optimality guarantees
- Authors: Guillaume Braun, Hemant Tyagi and Christophe Biernacki
- Abstract summary: We propose a new iterative algorithm to cluster networks with side information for nodes.
We show that our algorithm is optimal under the Contextual Symmetric Block Model.
- Score: 4.007017852999008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world networks often come with side information that can help to improve
the performance of network analysis tasks such as clustering. Despite a large
number of empirical and theoretical studies conducted on network clustering
methods during the past decade, the added value of side information and the
methods used to incorporate it optimally in clustering algorithms are
relatively less understood. We propose a new iterative algorithm to cluster
networks with side information for nodes (in the form of covariates) and show
that our algorithm is optimal under the Contextual Symmetric Stochastic Block
Model. Our algorithm can be applied to general Contextual Stochastic Block
Models and avoids hyperparameter tuning in contrast to previously proposed
methods. We confirm our theoretical results on synthetic data experiments where
our algorithm significantly outperforms other methods, and show that it can
also be applied to signed graphs. Finally we demonstrate the practical interest
of our method on real data.
Related papers
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
We present a novel hierarchical federated learning algorithm that incorporates quantization for communication-efficiency.
We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate.
Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - A Parameter-free Adaptive Resonance Theory-based Topological Clustering
Algorithm Capable of Continual Learning [20.995946115633963]
We propose a new parameter-free ART-based topological clustering algorithm capable of continual learning by introducing parameter estimation methods.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance to the state-of-the-art clustering algorithms without any parameter pre-specifications.
arXiv Detail & Related papers (2023-05-01T01:04:07Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Clustering algorithms for Block Markov Chains possess theoretical optimality guarantees.
In particular, our sequential data is derived from human DNA, written text, animal movement data and financial markets.
It is found that the Block Markov Chain model assumption can indeed produce meaningful insights in exploratory data analyses.
arXiv Detail & Related papers (2022-10-04T15:22:39Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Consistency of Anchor-based Spectral Clustering [0.0]
Anchor-based techniques reduce the computational complexity of spectral clustering algorithms.
We show that it is amenable to rigorous analysis, as well as being effective in practice.
We find that it is competitive with the state-of-the-art LSC method of Chen and Cai.
arXiv Detail & Related papers (2020-06-24T18:34:41Z) - Hyperspectral Unmixing Network Inspired by Unfolding an Optimization
Problem [2.4016406737205753]
The hyperspectral image (HSI) unmixing task is essentially an inverse problem, which is commonly solved by optimization algorithms.
We propose two novel network architectures, named U-ADMM-AENet and U-ADMM-BUNet, for abundance estimation and blind unmixing.
We show that the unfolded structures can find corresponding interpretations in machine learning literature, which further demonstrates the effectiveness of proposed methods.
arXiv Detail & Related papers (2020-05-21T18:49:45Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.