Controlling long ion strings for quantum simulation and precision
measurements
- URL: http://arxiv.org/abs/2112.10655v2
- Date: Tue, 21 Dec 2021 09:26:32 GMT
- Title: Controlling long ion strings for quantum simulation and precision
measurements
- Authors: Florian Kranzl, Manoj K. Joshi, Christine Maier, Tiff Brydges,
Johannes Franke, Rainer Blatt, Christian F. Roos
- Abstract summary: We describe a setup for carrying out many-ion quantum simulations including single-ion coherent control.
We present a set of experimental techniques probing ion-qubits by Ramsey and Carr-Purcell-Meiboom-Gill.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling a trapped-ion based quantum simulator to a large number of ions
creates a fully-controllable quantum system that becomes inaccessible to
numerical methods. When highly anisotropic trapping potentials are used to
confine the ions in the form of a long linear string, several challenges have
to be overcome to achieve high-fidelity coherent control of a quantum system
extending over hundreds of micrometers. In this paper, we describe a setup for
carrying out many-ion quantum simulations including single-ion coherent control
that we use for demonstrating entanglement in 50-ion strings. Furthermore, we
present a set of experimental techniques probing ion-qubits by Ramsey and
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences that enable detection (and
compensation) of power-line-synchronous magnetic-field variations, measurement
of path length fluctuations, and of the wavefronts of elliptical laser beams
coupling to the ion string.
Related papers
- A Site-Resolved 2D Quantum Simulator with Hundreds of Trapped Ions [0.18563999711877635]
We report the stable trapping of 512 ions in a 2D Wigner crystal and the sideband cooling of their transverse motion.
We demonstrate the quantum simulation of long-range quantum Ising models with tunable coupling strengths and patterns, with or without frustration, using 300 ions.
Our work paves the way for simulating classically intractable quantum dynamics and for running NISQ algorithms using 2D ion trap quantum simulators.
arXiv Detail & Related papers (2023-11-28T19:00:39Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Programmable quantum simulations of bosonic systems with trapped ions [0.0]
We describe a complementary approach for quantum simulations of bosonic systems using phonons in trapped-ion crystals.
The scheme features a high degree of programability over a dense graph of bosonic couplings.
It is suitable for hard problems such as boson sampling and simulations of long range bosonic and spin-boson Hamiltonians.
arXiv Detail & Related papers (2022-07-27T17:19:24Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Cold ion beam in a storage ring as a platform for large-scale quantum
computers and simulators: challenges and directions for research and
development [0.0]
Large-scale storage-ring-type ion-trap system capable of storing, cooling, and controlling a large number of ions as a platform for scalable quantum computing (QC) and quantum simulations (QS)
In this paper we consider a large leap forward in terms of the number of qubits, from fewer than 100 available in state-of-the-art linear ion-trap devices today to an order of 105 crystallized ions in the storage-ring setup.
arXiv Detail & Related papers (2021-01-12T00:52:33Z) - Scalable and Parallel Tweezer Gates for Quantum Computing with Long Ion
Strings [1.554996360671779]
We devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes.
We show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.
arXiv Detail & Related papers (2020-08-26T06:01:46Z) - Quantum simulations with complex geometries and synthetic gauge fields
in a trapped ion chain [0.0]
We introduce a technique that can substantially extend the reach of quantum simulators using an external field gradient along the ion chain and a global, uniform driving field.
The technique can be used to generate both static and time-varying synthetic gauge fields in a linear chain of trapped ions.
It enables continuous simulation of geometries of a variety of coupling and topologies, including periodic boundary conditions and high dimensional Hamiltonians.
arXiv Detail & Related papers (2020-07-04T16:48:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.