論文の概要: Task-oriented Dialogue Systems: performance vs. quality-optima, a review
- arxiv url: http://arxiv.org/abs/2112.11176v1
- Date: Tue, 21 Dec 2021 13:16:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 13:23:03.818604
- Title: Task-oriented Dialogue Systems: performance vs. quality-optima, a review
- Title(参考訳): タスク指向対話システム: パフォーマンス対品質最適化, レビュー
- Authors: Ryan Fellows, Hisham Ihshaish, Steve Battle, Ciaran Haines, Peter
Mayhew, J. Ignacio Deza
- Abstract要約: 最先端のタスク指向対話システムは、まだその可能性を最大限に発揮できていない。
他の会話の品質特性は、会話の成功を示すもの、そうでなければ、無視されることがある。
本稿では,対話システムの評価枠組みと対話システムにおける会話品質特性の役割について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented dialogue systems (TODS) are continuing to rise in popularity as
various industries find ways to effectively harness their capabilities, saving
both time and money. However, even state-of-the-art TODS are not yet reaching
their full potential. TODS typically have a primary design focus on completing
the task at hand, so the metric of task-resolution should take priority. Other
conversational quality attributes that may point to the success, or otherwise,
of the dialogue, may be ignored. This can cause interactions between human and
dialogue system that leave the user dissatisfied or frustrated. This paper
explores the literature on evaluative frameworks of dialogue systems and the
role of conversational quality attributes in dialogue systems, looking at if,
how, and where they are utilised, and examining their correlation with the
performance of the dialogue system.
- Abstract(参考訳): タスク指向対話システム(TODS)は、様々な産業が効果的に能力を活用し、時間とお金を節約する方法を見出すにつれ、人気が高まっている。
しかし、最先端のTODSでさえ、まだその可能性を最大限に発揮できていない。
TODSは通常、手作業の完了に主眼を置いているため、タスク解決の基準が優先されるべきである。
対話の成功を示す他の会話的品質特性、またはそれ以外は無視される可能性がある。
これは、ユーザーの不満や不満を和らげる人間と対話システムの相互作用を引き起こす可能性がある。
本稿では,対話システムの評価枠組みと対話システムにおける会話品質特性の役割について,その利用状況,利用状況,利用状況,および対話システムの性能との関係について検討する。
関連論文リスト
- Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems [57.16442740983528]
クラウドソースラベルは、タスク指向の対話システムを評価する上で重要な役割を果たす。
従来の研究では、アノテーションプロセスで対話コンテキストの一部だけを使用することが提案されている。
本研究では,対話文脈がアノテーション品質に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-04-15T17:56:39Z) - Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
本稿では,対話状態追跡のような複雑な環境下でのアートシステムのエラーを包括的に解析する。
音声MultiWozに基づいて、音声対話システムとチャットベースの対話システムとのギャップを埋めるためには、非カテゴリースロットの値の誤差に対処することが不可欠である。
論文 参考訳(メタデータ) (2023-11-03T08:45:22Z) - Toward More Accurate and Generalizable Evaluation Metrics for
Task-Oriented Dialogs [19.43845920149182]
ダイアログ品質と呼ばれる新しいダイアログレベルのアノテーションワークフローを導入する。
DQAの専門家アノテータは、ダイアログ全体の品質を評価し、ゴール完了やユーザ感情などの属性に対するラベルダイアログも評価する。
我々は,大規模音声アシスタントプラットフォームにおける対話品質を評価する上で,高品質なヒューマンアノテートデータを持つことが重要であると論じている。
論文 参考訳(メタデータ) (2023-06-06T19:43:29Z) - A Chit-Chats Enhanced Task-Oriented Dialogue Corpora for Fuse-Motive
Conversation Systems [9.541995537438394]
CCET (China Chat-Enhanced-Task) と呼ばれるマルチターン対話データセットをリリースする。
本稿では, CC音声で統合されたTODセッションの評価指標とともに, ヒューズ動機対話の形式化手法を提案する。
論文 参考訳(メタデータ) (2022-05-12T05:43:18Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
我々は,ユーザ満足度を予測するために,対話行動の逐次的ダイナミクスを取り入れた新しいフレームワーク,すなわちUSDAを提案する。
USDAは、ユーザの満足度を予測するために、コンテンツと行動機能の連続的な遷移を対話に取り入れている。
4つのベンチマーク目標指向対話データセットによる実験結果から,提案手法はUSEの既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-02-07T02:50:07Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
上記の2つのスキルを備えた統合対話システム(UniDS)を提案する。
我々は、チャットとタスク指向の対話の両方に対応可能な統合対話データスキーマを設計する。
我々は、事前訓練されたチャット対話モデルから混合対話データでUniDSを訓練する。
論文 参考訳(メタデータ) (2021-10-15T11:56:47Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
課題指向対話システムは、学術・産業社会でますます注目を集めている。
タスク指向ダイアログシステムにおける3つの重要なトピックについて論じる。(1)低リソース環境でのダイアログモデリングを容易にするデータ効率の改善、(2)ダイアログポリシー学習のためのマルチターンダイナミクスのモデリング、(3)ダイアログモデルへのドメイン知識の統合。
論文 参考訳(メタデータ) (2020-03-17T01:34:56Z) - Attention over Parameters for Dialogue Systems [69.48852519856331]
我々は,異なる対話スキルを個別にパラメータ化する対話システムを学び,AoP(Attention over Parameters)を通じてそれぞれを選択し,組み合わせることを学ぶ。
実験の結果,MultiWOZ,In-Car Assistant,Persona-Chatの複合データセット上での競合性能が得られた。
論文 参考訳(メタデータ) (2020-01-07T03:10:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。