Robust twin-field quantum key distribution through
sending-or-not-sending
- URL: http://arxiv.org/abs/2112.13723v5
- Date: Mon, 22 Aug 2022 07:33:19 GMT
- Title: Robust twin-field quantum key distribution through
sending-or-not-sending
- Authors: Cong Jiang, Zong-Wen Yu, Xiao-Long Hu, Xiang-Bin Wang
- Abstract summary: We present a general approach for efficiently calculating the SNS protocol's secure key rate with source errors.
The key rate of the recent SNS experiment in the 511 km field fiber is still positive using our method presented here, even if there is $pm 9.5%$ intensity fluctuation.
- Score: 0.9749560288448115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sending-or-not-sending (SNS) protocol is one of the most major variants
of the twin-field (TF) quantum key distribution (QKD) protocol and has been
realized in a 511 km field fiber, the farthest field experiment to date. In
practice, however, all decoy-state methods have unavoidable source errors, and
the source errors may be non-random, which compromises the security condition
of the existing TF-QKD protocols. In this study, we present a general approach
for efficiently calculating the SNS protocol's secure key rate with source
errors, by establishing the equivalent protocols through virtual attenuation
and tagged model. This makes the first result for TF-QKD in practice where
source intensity cannot be controlled exactly. Our method can be combined with
the two-way classical communication method such as active odd-parity pairing to
further improve the key rate. The numerical results show that if the intensity
error is within a few percent, the key rate and secure distance only decrease
marginally. The key rate of the recent SNS experiment in the 511 km field fiber
is still positive using our method presented here, even if there is $\pm 9.5\%$
intensity fluctuation. This shows that the SNS protocol is robust against
source errors.
Related papers
- Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - Device-independent quantum key distribution based on routed Bell tests [0.0]
We investigate DIQKD protocols based on a routed setup.
In these protocols, photons from the source are routed by an actively controlled switch to a nearby test device instead of the distant one.
We find that in an ideal case routed DIQKD protocols can significantly improve detection efficiency requirements, by up to $sim 30%$.
arXiv Detail & Related papers (2024-04-01T15:59:09Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Sending or not sending twin-field quantum key distribution with
distinguishable decoy states [10.66830089114367]
We find the external modulation of different intensity states through the test, required in those TF-QKD with post-phase compensation, shows a side channel in frequency domain.
We propose a complete and undetected eavesdropping attack, named passive frequency shift attack, on sending or not-sending TF-QKD protocol.
Our results emphasize the importance of practical security at source and might provide a valuable reference for the practical implementation of TF-QKD.
arXiv Detail & Related papers (2021-01-27T09:37:41Z) - Experimental composable security decoy-state quantum key distribution
using time-phase encoding [19.037123608278602]
We provide the rigorous finite-key security bounds for four-intensity decoy-state BB84 QKD against coherent attacks.
We build a time-phase encoding system with 200 MHz clocked to implement this protocol, in which the real-time secret key rate is more than 60 kbps over 50 km single-mode fiber.
arXiv Detail & Related papers (2020-02-25T04:59:43Z) - Tight security bounds for decoy-state quantum key distribution [1.1563829079760959]
The BB84 quantum key distribution (QKD) combined with decoy-state method is currently the most practical protocol.
Here, we provide the rigorous and optimal analytic formula to solve the above tasks.
Our results can be widely applied to deal with statistical fluctuation in quantum cryptography protocols.
arXiv Detail & Related papers (2020-02-16T07:48:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.