論文の概要: Financial Vision Based Differential Privacy Applications
- arxiv url: http://arxiv.org/abs/2112.14075v1
- Date: Tue, 28 Dec 2021 10:17:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-31 04:08:51.562939
- Title: Financial Vision Based Differential Privacy Applications
- Title(参考訳): 金融ビジョンに基づく微分プライバシーアプリケーション
- Authors: Jun-Hao Chen, Yi-Jen Wang, Yun-Cheng Tsai, Samuel Yen-Chi Chen
- Abstract要約: 金融取引データに、Googleが提案した2つの代表的なディープラーニングプライバシプライバシフレームワークを適用します。
DP-SGDでは、プライバシと精度のトレードオフは低い。
- 参考スコア(独自算出の注目度): 0.8602553195689513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The importance of deep learning data privacy has gained significant attention
in recent years. It is probably to suffer data breaches when applying deep
learning to cryptocurrency that lacks supervision of financial regulatory
agencies. However, there is little relative research in the financial area to
our best knowledge. We apply two representative deep learning privacy-privacy
frameworks proposed by Google to financial trading data. We designed the
experiments with several different parameters suggested from the original
studies. In addition, we refer the degree of privacy to Google and Apple
companies to estimate the results more reasonably. The results show that DP-SGD
performs better than the PATE framework in financial trading data. The tradeoff
between privacy and accuracy is low in DP-SGD. The degree of privacy also is in
line with the actual case. Therefore, we can obtain a strong privacy guarantee
with precision to avoid potential financial loss.
- Abstract(参考訳): 近年,ディープラーニングデータのプライバシの重要性が注目されている。
金融規制当局の監督を欠く暗号通貨にディープラーニングを適用する場合、おそらくデータ漏洩に苦しむことになる。
しかし、金融分野での最良の知識に対する相対的な研究はほとんどない。
金融取引データにGoogleの提案する2つの代表的なディープラーニングプライバシプライバシフレームワークを適用する。
本実験で提案する複数のパラメータを用いて実験を行った。
さらに、プライバシーの度合いをGoogleやAppleに言及し、その結果をより合理的に見積もる。
その結果,DP-SGDは金融取引データにおけるPATEフレームワークよりも優れていた。
DP-SGDでは、プライバシと精度のトレードオフは低い。
プライバシーの度合いも実際のケースと一致している。
したがって、潜在的な金融損失を避けるために、精度の高い強力なプライバシー保証を得ることができる。
関連論文リスト
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - Privacy in Practice: Private COVID-19 Detection in X-Ray Images
(Extended Version) [3.750713193320627]
私たちは、差分プライバシー(DP)を満たす機械学習モデルを作成します。
我々は、ユーティリティとプライバシのトレードオフをより広範囲に評価し、より厳格なプライバシー予算について検討する。
以上の結果から,MIAの課題依存的実践的脅威によって,必要なプライバシーレベルが異なる可能性が示唆された。
論文 参考訳(メタデータ) (2022-11-21T13:22:29Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Production of Categorical Data Verifying Differential Privacy:
Conception and Applications to Machine Learning [0.0]
差別化プライバシは、プライバシとユーティリティのトレードオフの定量化を可能にする正式な定義である。
ローカルDP(LDP)モデルでは、ユーザはデータをサーバに送信する前に、ローカルにデータをサニタイズすることができる。
いずれの場合も、微分プライベートなMLモデルは、非プライベートなモデルとほぼ同じユーティリティメトリクスを達成できると結論付けました。
論文 参考訳(メタデータ) (2022-04-02T12:50:14Z) - Debugging Differential Privacy: A Case Study for Privacy Auditing [60.87570714269048]
監査は、微分プライベートなスキームの欠陥を見つけるためにも利用できることを示す。
このケーススタディでは、微分プライベートなディープラーニングアルゴリズムの最近のオープンソース実装を監査し、99.9999999999%の信頼を得て、この実装が要求される差分プライバシー保証を満たさないことを発見した。
論文 参考訳(メタデータ) (2022-02-24T17:31:08Z) - Auditing Differentially Private Machine Learning: How Private is Private
SGD? [16.812900569416062]
我々は、差分的プライベートSGDが、最先端の分析によって保証されているものよりも、実際に優れたプライバシーを提供するかどうかを調査する。
われわれは、新しいデータ中毒攻撃を通じて、現実的なプライバシー攻撃に対応している。
論文 参考訳(メタデータ) (2020-06-13T20:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。