論文の概要: Altitude Optimization of UAV Base Stations from Satellite Images Using
Deep Neural Network
- arxiv url: http://arxiv.org/abs/2112.14551v1
- Date: Wed, 29 Dec 2021 13:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 18:22:02.405053
- Title: Altitude Optimization of UAV Base Stations from Satellite Images Using
Deep Neural Network
- Title(参考訳): 深層ニューラルネットワークを用いた衛星画像からのuav基地局高度最適化
- Authors: Ibrahim Shoer, Bahadir K. Gunturk, Hasan F. Ates, Tuncer Baykas
- Abstract要約: 本稿では,UAV基地局高度を最適化するための代替手法を提案する。
アプローチはディープラーニングに基づいており、特に、ターゲット領域の2次元衛星画像がディープニューラルネットワークに入力される。
- 参考スコア(独自算出の注目度): 5.467400475482668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is expected that unmanned aerial vehicles (UAVs) will play a vital role in
future communication systems. Optimum positioning of UAVs, serving as base
stations, can be done through extensive field measurements or ray tracing
simulations when the 3D model of the region of interest is available. In this
paper, we present an alternative approach to optimize UAV base station altitude
for a region. The approach is based on deep learning; specifically, a 2D
satellite image of the target region is input to a deep neural network to
predict path loss distributions for different UAV altitudes. The predicted path
distributions are used to calculate the coverage in the region; and the optimum
altitude, maximizing the coverage, is determined. The neural network is
designed and trained to produce multiple path loss distributions in a single
inference; thus, it is not necessary to train a separate network for each
altitude.
- Abstract(参考訳): 無人航空機(UAV)が将来の通信システムにおいて重要な役割を果たすことが期待されている。
基地局として機能するUAVの最適位置決めは、興味のある領域の3Dモデルが利用できる場合に、広範囲なフィールド計測やレイトレーシングシミュレーションによって行うことができる。
本稿では,uav基地局高度を地域ごとに最適化するための代替手法を提案する。
アプローチはディープラーニングに基づいており、具体的には、ターゲット領域の2D衛星画像が深層ニューラルネットワークに入力され、異なるUAV高度の経路損失分布を予測する。
予測された経路分布を用いて地域の範囲を計算し、その範囲を最大化する最適な高度を決定する。
ニューラルネットワークは、単一の推論で複数の経路損失分布を生成するように設計され、訓練されているため、高度ごとに別々のネットワークを訓練する必要はない。
関連論文リスト
- Near-field Beam training for Extremely Large-scale MIMO Based on Deep Learning [20.67122533341949]
深層学習に基づく近接場ビームトレーニング手法を提案する。
我々は,歴史データからチャネル特性を効率的に学習するために,畳み込みニューラルネットワーク(CNN)を用いる。
提案手法は,従来のビームトレーニング法と比較して,より安定したビームフォーミングゲインを実現し,性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-06-05T13:26:25Z) - NNPP: A Learning-Based Heuristic Model for Accelerating Optimal Path Planning on Uneven Terrain [5.337162499594818]
本稿では,この縮小された検索空間内でのみ最適な経路をAstarのような基礎アルゴリズムで見つけることができるNNPPモデルを提案する。
NNPPモデルは、多くの事前注釈付き最適経路のデモから、スタート地点とゴール地点に関する情報とマップ表現を学習する。
新規地図上での経路計画のテキストカラー化が可能である。
論文 参考訳(メタデータ) (2023-08-09T08:31:05Z) - UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks [52.14281905671453]
無人航空機(UAV)を空飛ぶ無線アクセスネットワーク(RAN)ノードとして使用することは、従来の固定地上配備を補完する。
無線マッピングは、この課題に関連する課題の1つであり、ここでは無線マッピングと呼ばれている。
接続性, センサ性, ローカライゼーション性能の観点から, 無線マッピングによる利点を示す。
論文 参考訳(メタデータ) (2022-05-06T16:16:08Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
私たちのアプローチの重要な特徴は、ディープラーニングベースのアーキテクチャのための新しい精度モデルです。
実地フィールドデータを用いた精密農業における作物・雑草分断の適用性について,本研究のアプローチを評価した。
論文 参考訳(メタデータ) (2021-08-04T07:30:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本論文では,複数のセルコネクテッドUAVの衝突のない経路を探索する。
本稿では,オンライン信号対干渉+雑音比マッピングを用いたオフライン時間差学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-09T16:52:33Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本稿では,衝突回避と無線接続制約による複数UAV軌道最適化問題を再構成する。
この問題を解決するために,分散型深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-03T22:22:20Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。