論文の概要: Deep learning of many-body observables and quantum information scrambling
- arxiv url: http://arxiv.org/abs/2302.04621v2
- Date: Mon, 15 Jul 2024 20:33:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 00:30:09.199347
- Title: Deep learning of many-body observables and quantum information scrambling
- Title(参考訳): 多体観測器の深層学習と量子情報スクランブル
- Authors: Naeimeh Mohseni, Junheng Shi, Tim Byrnes, Michael J. Hartmann,
- Abstract要約: 物理オブザーバブルの力学を学習する際のデータ駆動型ディープニューラルネットワークの能力が、量子情報のスクランブルとどのように相関するかを考察する。
ニューラルネットワークを用いて、モデルのパラメータからランダム量子回路における可観測物の進化へのマッピングを求める。
特定のタイプのリカレントニューラルネットワークは、局所的およびスクランブルされた状態の両方でトレーニングされたシステムサイズと時間ウィンドウ内での予測を一般化する上で非常に強力であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has shown significant breakthroughs in quantum science, where in particular deep neural networks exhibited remarkable power in modeling quantum many-body systems. Here, we explore how the capacity of data-driven deep neural networks in learning the dynamics of physical observables is correlated with the scrambling of quantum information. We train a neural network to find a mapping from the parameters of a model to the evolution of observables in random quantum circuits for various regimes of quantum scrambling and test its \textit{generalization} and \textit{extrapolation} capabilities in applying it to unseen circuits. Our results show that a particular type of recurrent neural network is extremely powerful in generalizing its predictions within the system size and time window that it has been trained on for both, localized and scrambled regimes. These include regimes where classical learning approaches are known to fail in sampling from a representation of the full wave function. Moreover, the considered neural network succeeds in \textit{extrapolating} its predictions beyond the time window and system size that it has been trained on for models that show localization, but not in scrambled regimes.
- Abstract(参考訳): 機械学習は量子科学において重要なブレークスルーを示しており、特にディープニューラルネットワークは量子多体システムのモデリングにおいて顕著な力を示した。
本稿では,物理観測値の力学を学習する際のデータ駆動型ディープニューラルネットワークの容量が,量子情報のスクランブルとどのように相関するかを考察する。
ニューラルネットワークを用いて、モデルのパラメータからランダムな量子回路における可観測物の進化へのマッピングをトレーニングし、未知の回路に適用する際、その \textit{ Generalization} と \textit{extrapolation} の機能をテストする。
以上の結果から,リカレントニューラルネットワークはシステムサイズや時間ウィンドウ内での予測を,局所的,スクランブル型,スクランブル型の両方でトレーニングした上で,極めて強力であることが示唆された。
これらには、古典的な学習アプローチが完全な波動関数の表現からサンプリングする際に失敗することが知られているレギュレーションが含まれる。
さらに、検討されたニューラルネットワークは、ローカライゼーションを示すモデルのためにトレーニングされた時間ウィンドウとシステムサイズを超えた予測をtextit{extrapolating}で成功させる。
関連論文リスト
- Transfer learning in predicting quantum many-body dynamics: from physical observables to entanglement entropy [0.6581635937019595]
本稿では,多体系の物理観測値のサブセットに基づいてトレーニングされたニューラルネットワークの能力について述べる。
特に、トレーニング済みのニューラルネットワークが絡み合いのエントロピーの学習をいかに促進するかに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-25T14:32:21Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - On the Interpretability of Quantum Neural Networks [0.0]
人工知能(AI)手法、特にディープニューラルネットワークの解釈可能性は非常に興味深い。
本稿では,古典的ニューラルネットワークによく用いられる局所的モデルに依存しない解釈可能性尺度を用いて,量子ニューラルネットワークの解釈可能性について検討する。
我々の説明の1つの特徴は、データサンプルが本質的にランダムな量子測定の対象であるランダムなラベルを与えられた領域の描写である。
論文 参考訳(メタデータ) (2023-08-22T00:43:14Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
分散量子ニューラルネットワークにおける技術の現状を概観する。
量子データセットの分布は、量子モデルの分布よりも古典的な分布と類似性があることが分かる。
論文 参考訳(メタデータ) (2022-11-14T00:27:01Z) - Flexible learning of quantum states with generative query neural
networks [4.540894342435848]
複数の量子状態にまたがる学習は、生成的クエリニューラルネットワークによって達成できることを示す。
我々のネットワークは、古典的にシミュレートされたデータでオフラインでトレーニングでき、後に未知の量子状態を実際の実験データから特徴づけるのに使うことができる。
論文 参考訳(メタデータ) (2022-02-14T15:48:27Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。