論文の概要: Training Quantized Deep Neural Networks via Cooperative Coevolution
- arxiv url: http://arxiv.org/abs/2112.14834v1
- Date: Thu, 23 Dec 2021 09:13:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-09 13:32:34.846755
- Title: Training Quantized Deep Neural Networks via Cooperative Coevolution
- Title(参考訳): 協調共進化による量子化深層ニューラルネットワークの訓練
- Authors: Fu Peng, Shengcai Liu, Ke Tang
- Abstract要約: 本稿では,ディープニューラルネットワーク(DNN)の定量化手法を提案する。
協調的共進化の枠組みでは,分布推定アルゴリズムを用いて低ビット重みの探索を行う。
実験の結果,Cifar-10データセット上で4ビットのResNet-20を,精度を犠牲にすることなくトレーニングできることがわかった。
- 参考スコア(独自算出の注目度): 27.967480639403796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantizing deep neural networks (DNNs) has been a promising solution for
deploying deep neural networks on embedded devices. However, most of the
existing methods do not quantize gradients, and the process of quantizing DNNs
still has a lot of floating-point operations, which hinders the further
applications of quantized DNNs. To solve this problem, we propose a new
heuristic method based on cooperative coevolution for quantizing DNNs. Under
the framework of cooperative coevolution, we use the estimation of distribution
algorithm to search for the low-bits weights. Specifically, we first construct
an initial quantized network from a pre-trained network instead of random
initialization and then start searching from it by restricting the search
space. So far, the problem is the largest discrete problem known to be solved
by evolutionary algorithms. Experiments show that our method can train 4 bit
ResNet-20 on the Cifar-10 dataset without sacrificing accuracy.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の量子化は、組み込みデバイスにディープニューラルネットワークをデプロイする上で有望なソリューションである。
しかし、既存の手法の多くは勾配を量子化せず、DNNの量子化プロセスは依然として多くの浮動小数点演算を持ち、量子化DNNのさらなる応用を妨げる。
そこで本研究では,DNNの定量化のための協調的共進化に基づく新しいヒューリスティック手法を提案する。
協調的共進化の枠組みでは,分布推定アルゴリズムを用いて低ビット重みの探索を行う。
具体的には,まずランダム初期化に代えて事前学習したネットワークから初期量子化ネットワークを構築し,検索空間を制限して探索を開始する。
これまでのところ、この問題は進化アルゴリズムによって解決された最大の離散問題である。
実験の結果,Cifar-10データセット上の4ビットResNet-20を精度を犠牲にすることなくトレーニングできることがわかった。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
ディープニューラルネットワーク(DNN)は、様々なコンピュータシステムにおいてますます重要な役割を担っている。
これらのネットワークを作成するために、エンジニアは通常、望ましいトポロジを指定し、自動トレーニングアルゴリズムを使用してネットワークの重みを選択する。
本稿では,近年のDNN検証の進歩を活用して,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-05-28T07:53:50Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - A Greedy Algorithm for Quantizing Neural Networks [4.683806391173103]
本稿では,事前学習したニューラルネットワークの重みを定量化するための計算効率のよい新しい手法を提案する。
本手法は,複雑な再学習を必要とせず,反復的に層を定量化する手法である。
論文 参考訳(メタデータ) (2020-10-29T22:53:10Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z) - Deep HyperNetwork-Based MIMO Detection [10.433286163090179]
従来のアルゴリズムは複雑すぎて実用的すぎるか、パフォーマンスが悪いかのどちらかだ。
最近のアプローチでは、ディープニューラルネットワークとして検出器を実装することで、これらの課題に対処しようとした。
本研究では、チャネル行列を入力とし、ニューラルネットワークベースの検出器の重みを生成するハイパーネットワークと呼ばれる追加のニューラルネットワーク(NN)をトレーニングすることで、両方の問題に対処する。
論文 参考訳(メタデータ) (2020-02-07T13:03:22Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。