論文の概要: Quantum-Enhanced Weight Optimization for Neural Networks Using Grover's Algorithm
- arxiv url: http://arxiv.org/abs/2504.14568v1
- Date: Sun, 20 Apr 2025 10:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 23:44:57.008887
- Title: Quantum-Enhanced Weight Optimization for Neural Networks Using Grover's Algorithm
- Title(参考訳): グローバーアルゴリズムを用いたニューラルネットワークの量子化重み最適化
- Authors: Stefan-Alexandru Jura, Mihai Udrescu,
- Abstract要約: 本稿では,古典的NNの重み付けを最適化するために量子コンピューティングを提案する。
我々は、NNの最適パラメータの探索を高速化するために、Groverの量子探索アルゴリズムのインスタンスを設計する。
提案手法は,他のQNN手法と比較して,より少ない量子ビットを必要とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main approach to hybrid quantum-classical neural networks (QNN) is employing quantum computing to build a neural network (NN) that has quantum features, which is then optimized classically. Here, we propose a different strategy: to use quantum computing in order to optimize the weights of a classical NN. As such, we design an instance of Grover's quantum search algorithm to accelerate the search for the optimal parameters of an NN during the training process, a task traditionally performed using the backpropagation algorithm with the gradient descent method. Indeed, gradient descent has issues such as exploding gradient, vanishing gradient, or convexity problem. Other methods tried to address such issues with strategies like genetic searches, but they carry additional problems like convergence consistency. Our original method avoids these issues -- because it does not calculate gradients -- and capitalizes on classical architectures' robustness and Grover's quadratic speedup in high-dimensional search spaces to significantly reduce test loss (58.75%) and improve test accuracy (35.25%), compared to classical NN weight optimization, on small datasets. Unlike most QNNs that are trained on small datasets only, our method is also scalable, as it allows the optimization of deep networks; for an NN with 3 hidden layers, trained on the Digits dataset from scikit-learn, we obtained a mean accuracy of 97.7%. Moreover, our method requires a much smaller number of qubits compared to other QNN approaches, making it very practical for near-future quantum computers that will still deliver a limited number of logical qubits.
- Abstract(参考訳): ハイブリッド量子古典ニューラルネットワーク(QNN)の主なアプローチは、量子コンピューティングを使用して、古典的に最適化された量子特徴を持つニューラルネットワーク(NN)を構築することである。
本稿では,古典的NNの重み付けを最適化するために量子コンピューティングを使用する方法を提案する。
そこで我々は,トレーニングプロセス中にNNの最適パラメータの探索を高速化するために,Groverの量子探索アルゴリズムのインスタンスを設計する。
実際、勾配降下には爆発的勾配、消滅的勾配、凸問題などの問題がある。
他の方法では、遺伝子探索のような戦略でそのような問題に対処しようとしたが、収束一貫性のような追加の問題も抱えていた。
従来の手法では勾配を計算せず、高次元探索空間における古典的アーキテクチャのロバスト性やグロバーの2次高速化を利用して、テスト損失(58.75%)を著しく低減し、テスト精度(35.25%)を向上させる。
小さなデータセットでのみトレーニングされるほとんどのQNNとは異なり、ディープネットワークの最適化を可能にするため、当社の手法はスケーラブルである。
さらに,本手法では,他のQNN手法に比べてより少ない量子ビット数を必要とするため,論理量子ビット数に制限のある近未来量子コンピュータでは極めて実用的である。
関連論文リスト
- Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
量子畳み込みニューラルネットワーク(QCNN)は量子機械学習において有望なアプローチである。
量子リソースの割り当てを最適化しながら任意の入力データ次元を処理できるQCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-28T02:25:12Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
本稿では,量子回路のパラメータを出力するために,Emphmeta-Optimizerネットワークをトレーニングする新しいメタ最適化アルゴリズムを提案する。
我々は,従来の勾配に基づくアルゴリズムよりも回路評価が少ない場合に,より高品質な最小値が得られることを示す。
論文 参考訳(メタデータ) (2023-04-15T01:09:12Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Training Quantized Deep Neural Networks via Cooperative Coevolution [27.967480639403796]
本稿では,ディープニューラルネットワーク(DNN)の定量化手法を提案する。
協調的共進化の枠組みでは,分布推定アルゴリズムを用いて低ビット重みの探索を行う。
実験の結果,Cifar-10データセット上で4ビットのResNet-20を,精度を犠牲にすることなくトレーニングできることがわかった。
論文 参考訳(メタデータ) (2021-12-23T09:13:13Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - GradFreeBits: Gradient Free Bit Allocation for Dynamic Low Precision
Neural Networks [4.511923587827301]
量子ニューラルネットワーク(QNN)は、低リソースエッジデバイスにディープニューラルネットワークをデプロイするための主要なアプローチのひとつだ。
動的QNNを訓練するための新しい共同最適化スキームであるGradFreeBitsを提案する。
本手法はCIFAR10/100上での最先端の低精度ニューラルネットワークと画像ネットの分類を同等あるいは同等の性能で実現している。
論文 参考訳(メタデータ) (2021-02-18T12:18:09Z) - Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
in the Infinite-Width Limit [47.324627920761685]
我々は、無限大のNNのアンサンブルに先立って関数空間をガウス過程として特徴づける最近の理論的進歩を用いる。
これにより、関数空間上の暗黙の前のNNについて、よりよく理解できます。
また,従来のNNGPを用いた分類手法の校正について検討した。
論文 参考訳(メタデータ) (2020-10-14T18:41:54Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。