Position measurement of a levitated nanoparticle via interference with
its mirror image
- URL: http://arxiv.org/abs/2112.14990v1
- Date: Thu, 30 Dec 2021 09:55:24 GMT
- Title: Position measurement of a levitated nanoparticle via interference with
its mirror image
- Authors: Lorenzo Dania, Katharina Heidegger, Dmitry S. Bykov, Giovanni
Cerchiari, Gabriel Araneda, Tracy E. Northup
- Abstract summary: We demonstrate a self-interference method to detect the particle's motion.
We measure the particle's motion with a sensitivity of $1.7times 10-12 textm/sqrttextHz$, corresponding to a detection efficiency of 2.1%.
As an application of this method, we cool the particle, via feedback, to temperatures below those achieved in the same setup using a standard position measurement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interferometric methods for detecting the motion of a levitated nanoparticle
provide a route to the quantum ground state, but such methods are currently
limited by mode mismatch between the reference beam and the dipolar field
scattered by the particle. Here we demonstrate a self-interference method to
detect the particle's motion that solves this problem. A Paul trap confines a
charged dielectric nanoparticle in high vacuum, and a mirror retro-reflects the
scattered light. We measure the particle's motion with a sensitivity of
$1.7\times 10^{-12} \text{m}/\sqrt{\text{Hz}}$, corresponding to a detection
efficiency of 2.1%, with a numerical aperture of 0.18. As an application of
this method, we cool the particle, via feedback, to temperatures below those
achieved in the same setup using a standard position measurement.
Related papers
- In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Fast Quantum Interference of a Nanoparticle via Optical Potential
Control [0.0]
We introduce and theoretically analyze a scheme to prepare and detect non-Gaussian quantum states of an optically levitated particle.
We show that this allows operating on short time- and lengthscales, which significantly reduces the demands on decoherence rates in such experiments.
arXiv Detail & Related papers (2022-07-25T21:28:12Z) - Scalable all-optical cold damping of levitated nanoparticles [3.0112534079486846]
We introduce a novel all-optical cold damping scheme based on spatial modulation of the trap position.
We show that the technique cools the center-of-mass motion of particles down to $17,$mK at a pressure of $2 times 10-6,$mbar.
Our work paves the way towards studying quantum interactions between particles, achieving 3D quantum control of particle motion without cavity-based cooling, electrodes or charged particles.
arXiv Detail & Related papers (2022-05-09T17:57:20Z) - Imaging based feedback cooling of a levitated nanoparticle [0.0]
Imaging-based detection of the motion of the levitated nanoparticles complements a widely-used interferometric detection method.
Here, we show the camera-based feedback cooling of a charged nanoparticles levitated in a linear Paul trap.
arXiv Detail & Related papers (2022-04-12T03:35:35Z) - Schr\"{o}dinger cat states of a macroscopic charged particle co-trapped
with an ion [0.0]
We investigate the feasibility of observing matter-wave interference of a micron-sized charged particle by putting it into a quantum superposition of states with a distinguishable separation.
An atomic ion is confined in a linear Paul trap along with the massive charged particle so that we can make use of the toolbox of experimental techniques developed to control quantum states of trapped ions.
arXiv Detail & Related papers (2021-11-22T23:27:13Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Measuring ion oscillations at the quantum level with fluorescence light [0.0]
We demonstrate an optical method for detecting the mechanical oscillations of an atom with single-phonon sensitivity.
Results could be applied for motion detection of other light scatterers of fundamental interest, such as trapped nanoparticles.
arXiv Detail & Related papers (2020-09-29T15:27:29Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.