論文の概要: Measuring and Sampling: A Metric-guided Subgraph Learning Framework for
Graph Neural Network
- arxiv url: http://arxiv.org/abs/2112.15015v1
- Date: Thu, 30 Dec 2021 11:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 13:55:04.443040
- Title: Measuring and Sampling: A Metric-guided Subgraph Learning Framework for
Graph Neural Network
- Title(参考訳): 計測とサンプリング:グラフニューラルネットワークのためのメトリック誘導サブグラフ学習フレームワーク
- Authors: Jiyang Bai, Yuxiang Ren, Jiawei Zhang
- Abstract要約: グラフニューラルネットワーク(GNN)のためのMetric-Guided(MeGuide)サブグラフ学習フレームワークを提案する。
MeGuideでは、サブグラフサンプリングとミニバッチベースのトレーニングのガイドとして、Feature SmoothnessとConnection Failure Distanceという2つの新しいメトリクスを使用している。
複数のデータセット上で様々なGNNをトレーニングする上で,MeGuideの有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 11.017348743924426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural network (GNN) has shown convincing performance in learning
powerful node representations that preserve both node attributes and graph
structural information. However, many GNNs encounter problems in effectiveness
and efficiency when they are designed with a deeper network structure or handle
large-sized graphs. Several sampling algorithms have been proposed for
improving and accelerating the training of GNNs, yet they ignore understanding
the source of GNN performance gain. The measurement of information within graph
data can help the sampling algorithms to keep high-value information while
removing redundant information and even noise. In this paper, we propose a
Metric-Guided (MeGuide) subgraph learning framework for GNNs. MeGuide employs
two novel metrics: Feature Smoothness and Connection Failure Distance to guide
the subgraph sampling and mini-batch based training. Feature Smoothness is
designed for analyzing the feature of nodes in order to retain the most
valuable information, while Connection Failure Distance can measure the
structural information to control the size of subgraphs. We demonstrate the
effectiveness and efficiency of MeGuide in training various GNNs on multiple
datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ノード属性とグラフ構造情報の両方を保存する強力なノード表現の学習において、説得力のある性能を示している。
しかし、より深いネットワーク構造で設計したり、大規模なグラフを扱う場合、多くのGNNは効率と効率の問題がある。
GNNのトレーニングの改善と高速化のために,いくつかのサンプリングアルゴリズムが提案されているが,GNNのパフォーマンス向上の源泉は無視されている。
グラフデータ内の情報の計測は、サンプリングアルゴリズムが冗長な情報やノイズを取り除きながら高価値な情報を保持するのに役立つ。
本稿では,GNNのためのMetric-Guided (MeGuide) サブグラフ学習フレームワークを提案する。
MeGuideでは、サブグラフサンプリングとミニバッチベースのトレーニングのガイドとして、Feature SmoothnessとConnection Failure Distanceという2つの新しいメトリクスを使用している。
特徴の滑らかさは、最も価値のある情報を保持するためにノードの特徴を分析するために設計され、接続障害距離は、サブグラフのサイズを制御する構造情報を測定することができる。
複数のデータセット上で様々なGNNをトレーニングする上で,MeGuideの有効性と有効性を示す。
関連論文リスト
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
グラフネットワーク(GNN)のトレーニングを強化するための新しいグラフ構造Prompt Learning法(GPL)を提案する。
GPLはタスク非依存のグラフ構造損失を利用して、GNNが下流タスクを同時に解決しながら固有のグラフ特性を学習することを奨励している。
11の実世界のデータセットの実験では、ニューラルネットワークによってトレーニングされた後、GNNはノード分類、グラフ分類、エッジタスクにおいて、元のパフォーマンスを大幅に上回った。
論文 参考訳(メタデータ) (2024-07-16T03:59:18Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための様々な分野で成功している。
本稿では,GNNの性能とロバスト性向上のためのアンサンブル学習手法の適用について検討する。
論文 参考訳(メタデータ) (2023-10-22T03:55:13Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Two-level Graph Neural Network [15.014364222532347]
2レベルGNN(TL-GNN)と呼ばれる新しいGNNフレームワークを提案する。
これは、サブグラフレベル情報とノードレベル情報とをマージする。
実験により、TL-GNNは既存のGNNよりも優れ、最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2022-01-03T02:15:20Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Ripple Walk Training: A Subgraph-based training framework for Large and
Deep Graph Neural Network [10.36962234388739]
本稿では,深部および大規模グラフニューラルネットワークのための一般的なサブグラフベーストレーニングフレームワークであるRipple Walk Training(RWT)を提案する。
RWTは、全グラフからサブグラフをサンプリングしてミニバッチを構成し、全GNNはミニバッチ勾配に基づいて更新される。
グラフの異なるサイズに関する大規模な実験は、様々なGNNを訓練する際のRWTの有効性と効率を実証している。
論文 参考訳(メタデータ) (2020-02-17T19:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。