Cloud Removal from Satellite Images
- URL: http://arxiv.org/abs/2112.15483v1
- Date: Thu, 23 Dec 2021 07:25:19 GMT
- Title: Cloud Removal from Satellite Images
- Authors: Rutvik Chauhan, Antarpuneet Singh, Sujoy Saha
- Abstract summary: We have analyzed available cloud detection technique using sentinel hub.
We have also implemented spatial attention generative adversarial network and improved quality of generated image compared to previous solution.
- Score: 0.6388940465023902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this report, we have analyzed available cloud detection technique using
sentinel hub. We have also implemented spatial attention generative adversarial
network and improved quality of generated image compared to previous solution
[7].
Related papers
- Removing cloud shadows from ground-based solar imagery [0.33748750222488655]
We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN.
We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds.
arXiv Detail & Related papers (2024-07-18T10:38:24Z) - High-Resolution Cloud Detection Network [4.717213036330225]
This paper introduces the High-Resolution Cloud Detection Network (HR-cloud-Net)
HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multi-resolution pyramid pooling module.
A novel approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images.
arXiv Detail & Related papers (2024-07-10T04:54:03Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
We propose a method to reconstruct point clouds from few images and to denoise point clouds from their rendering.
To improve reconstruction in constraint settings, we regularize the training of a differentiable with hybrid surface and appearance.
We demonstrate how these learned filters can be used to remove point cloud noise coming without 3D supervision.
arXiv Detail & Related papers (2024-04-01T13:38:16Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - MM811 Project Report: Cloud Detection and Removal in Satellite Images [0.0]
We aim to address cloud removal from satellite images using AttentionGAN.
We compare our results by reproducing the results obtained using traditional GANs and auto-encoders.
The outcome of this project can be used to develop applications that require cloud-free satellite images.
arXiv Detail & Related papers (2022-12-21T21:14:35Z) - Boosting Point Clouds Rendering via Radiance Mapping [49.24193509772339]
We focus on boosting the image quality of point clouds rendering with a compact model design.
We simplify the NeRF representation to a spatial mapping function which only requires single evaluation per pixel.
Our method achieves the state-of-the-art rendering on point clouds, outperforming prior works by notable margins.
arXiv Detail & Related papers (2022-10-27T01:25:57Z) - Sentinel-1 and Sentinel-2 Spatio-Temporal Data Fusion for Clouds Removal [51.9654625216266]
A novel method for clouds-corrupted optical image restoration has been presented and developed based on a joint data fusion paradigm.
It is worth highlighting that the Sentinel code and the dataset have been implemented from scratch and made available to interested research for further analysis and investigation.
arXiv Detail & Related papers (2021-06-23T08:15:01Z) - Seeing Through Clouds in Satellite Images [14.84582204034532]
This paper presents a neural-network-based solution to recover pixels occluded by clouds in satellite images.
We leverage radio frequency (RF) signals in the ultra/super-high frequency band that penetrate clouds to help reconstruct the occluded regions in multispectral images.
arXiv Detail & Related papers (2021-06-15T20:01:27Z) - An Efficient Hypergraph Approach to Robust Point Cloud Resampling [57.49817398852218]
This work investigates point cloud resampling based on hypergraph signal processing (HGSP)
We design hypergraph spectral filters to capture multi-lateral interactions among the signal nodes of point clouds.
Our test results validate the high efficacy of hypergraph characterization of point clouds.
arXiv Detail & Related papers (2021-03-11T23:19:54Z) - Cloud Removal for Remote Sensing Imagery via Spatial Attention
Generative Adversarial Network [0.9746724603067647]
We propose a model named spatial attention generative adversarial network (SpA GAN) to solve the remote sensing imagery cloud removal task.
SpA GAN imitates the human visual mechanism, and recognizes and focuses the cloud area with local-to-global spatial attention.
arXiv Detail & Related papers (2020-09-28T02:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.