Removing cloud shadows from ground-based solar imagery
- URL: http://arxiv.org/abs/2407.13379v1
- Date: Thu, 18 Jul 2024 10:38:24 GMT
- Title: Removing cloud shadows from ground-based solar imagery
- Authors: Amal Chaoui, Jay Paul Morgan, Adeline Paiement, Jean Aboudarham,
- Abstract summary: We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN.
We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds.
- Score: 0.33748750222488655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study and prediction of space weather entails the analysis of solar images showing structures of the Sun's atmosphere. When imaged from the Earth's ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
The patterns of shadows are arbitrary, varied, and often have highly complex trace structures.
The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas.
Recent developments in this field are primarily driven by deep learning-based solutions.
arXiv Detail & Related papers (2024-07-11T20:58:38Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
We propose a method to reconstruct point clouds from few images and to denoise point clouds from their rendering.
To improve reconstruction in constraint settings, we regularize the training of a differentiable with hybrid surface and appearance.
We demonstrate how these learned filters can be used to remove point cloud noise coming without 3D supervision.
arXiv Detail & Related papers (2024-04-01T13:38:16Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
We present an iterative diffusion process for cloud removal (IDF-CR)
IDF-CR is divided into two-stage models that address pixel space and latent space.
In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output.
arXiv Detail & Related papers (2024-03-18T15:23:48Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
Deep learning algorithms have emerged as promising approach to solve image segmentation problems.
In this paper, we introduce a deep-learning model for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network.
We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s.
arXiv Detail & Related papers (2023-11-29T09:31:31Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
We propose a CLIP embedding module to make the network handle different weather conditions adaptively.
This module integrates the sample specific weather prior extracted by CLIP image encoder together with the distribution specific information learned by a set of parameters.
arXiv Detail & Related papers (2023-06-15T10:06:13Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
We introduce UnCRtainTS, a method for multi-temporal cloud removal combining a novel attention-based architecture.
We show how the well-calibrated predicted uncertainties enable a precise control of the reconstruction quality.
arXiv Detail & Related papers (2023-04-11T19:27:18Z) - See Blue Sky: Deep Image Dehaze Using Paired and Unpaired Training
Images [73.23687409870656]
We propose a cycle generative adversarial network to construct a novel end-to-end image dehaze model.
We adopt outdoor image datasets to train our model, which includes a set of real-world unpaired image dataset and a set of paired image dataset.
Based on the cycle structure, our model adds four different kinds of loss function to constrain the effect including adversarial loss, cycle consistency loss, photorealism loss and paired L1 loss.
arXiv Detail & Related papers (2022-10-14T07:45:33Z) - Seeing Through Clouds in Satellite Images [14.84582204034532]
This paper presents a neural-network-based solution to recover pixels occluded by clouds in satellite images.
We leverage radio frequency (RF) signals in the ultra/super-high frequency band that penetrate clouds to help reconstruct the occluded regions in multispectral images.
arXiv Detail & Related papers (2021-06-15T20:01:27Z) - Cloud removal in remote sensing images using generative adversarial
networks and SAR-to-optical image translation [0.618778092044887]
Cloud removal has received much attention due to the wide range of satellite image applications.
In this study, we attempt to solve the problem using two generative adversarial networks (GANs)
The first translates SAR images into optical images, and the second removes clouds using the translated images of prior GAN.
arXiv Detail & Related papers (2020-12-22T17:19:14Z) - Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization [3.65794756599491]
In remote sensing images, the presence of thick cloud accompanying cloud shadow is a high probability event.
A novel thick cloud removal method for remote sensing images based on temporal smoothness and sparsity-regularized tensor optimization is proposed.
arXiv Detail & Related papers (2020-08-11T05:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.