論文の概要: The Interpretability of LSTM Models for Predicting Oil Company Stocks:
Impact of Correlated Features
- arxiv url: http://arxiv.org/abs/2201.00350v5
- Date: Wed, 20 Dec 2023 09:09:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 22:33:54.239733
- Title: The Interpretability of LSTM Models for Predicting Oil Company Stocks:
Impact of Correlated Features
- Title(参考訳): 石油会社の株価予測におけるLSTMモデルの解釈可能性:関連性の影響
- Authors: Javad T. Firouzjaee and Pouriya Khaliliyan
- Abstract要約: 本研究では,石油在庫予測のための長短期記憶(LSTM)citeec04モデルの解釈性に及ぼす相関特性の影響について検討した。
本研究の目的は、原油価格、金価格、米ドルといった市場に影響を与える複数の要因を考慮し、株価予測の精度を向上させることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oil companies are among the largest companies in the world whose economic
indicators in the global stock market have a great impact on the world
economy\cite{ec00} and market due to their relation to gold\cite{ec01}, crude
oil\cite{ec02}, and the dollar\cite{ec03}. This study investigates the impact
of correlated features on the interpretability of Long Short-Term
Memory(LSTM)\cite{ec04} models for predicting oil company stocks. To achieve
this, we designed a Standard Long Short-Term Memory (LSTM) network and trained
it using various correlated datasets. Our approach aims to improve the accuracy
of stock price prediction by considering the multiple factors affecting the
market, such as crude oil prices, gold prices, and the US dollar. The results
demonstrate that adding a feature correlated with oil stocks does not improve
the interpretability of LSTM models. These findings suggest that while LSTM
models may be effective in predicting stock prices, their interpretability may
be limited. Caution should be exercised when relying solely on LSTM models for
stock price prediction as their lack of interpretability may make it difficult
to fully understand the underlying factors driving stock price movements. We
have employed complexity analysis to support our argument, considering that
financial markets encompass a form of physical complex system\cite{ec05}. One
of the fundamental challenges faced in utilizing LSTM models for financial
markets lies in interpreting the unexpected feedback dynamics within them.
- Abstract(参考訳): 石油会社は、世界の株式市場における経済指標が世界経済と市場に与える影響に大きな影響を与えている世界最大の企業の一つである。
本研究では,石油在庫予測のための長短期記憶モデル(LSTM)\cite{ec04})の解釈性に対する相関特性の影響について検討した。
そこで我々は,LSTM(Standard Long Short-Term Memory)ネットワークを設計し,様々な相関データセットを用いて学習した。
本研究の目的は、原油価格、金価格、米ドルといった市場に影響を与える複数の要因を考慮し、株価予測の精度を向上させることである。
その結果,石油在庫と相関する機能を追加してもLSTMモデルの解釈性は向上しないことがわかった。
これらの結果から,LSTMモデルは株価の予測に有効であるが,解釈可能性には限界があることが示唆された。
株価の変動を引き起こす要因を十分に理解することが困難になる可能性があるため、株価予測にlstmモデルのみに頼る場合、注意すべきである。
我々は、金融市場が物理複合システム『cite{ec05}』の形式を含むことを考慮し、複雑性分析を用いて議論を支援してきた。
金融市場におけるLSTMモデルの利用において直面する根本的な課題の1つは、その内部の予期せぬフィードバックのダイナミクスを解釈することである。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
本稿では,双方向長短期メモリ(Bidirectional Long Short-Term Memory, Bi-LSTM)ネットワークとFinBERTを併用して,暗号通貨の予測精度を向上させるハイブリッドモデルを提案する。
このアプローチは、先進的な時系列モデルと感情分析を組み合わせることで、不安定な金融市場の予測において重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-11-02T14:43:06Z) - Predicting Stock Prices with FinBERT-LSTM: Integrating News Sentiment Analysis [2.7921137693344384]
我々は、株価の歴史と金融、ビジネス、技術ニュースに基づくディープラーニングネットワークを使用し、株価を予測するために市場情報を導入しています。
我々はファイナンシャルテキスト中の感情を識別するために、FinBERTとして知られる事前学習NLPモデルを開発した。
このモデルは、市場構造階層、すなわち、市場、産業、および株価関連ニュースカテゴリに関するニュースカテゴリと、前週の株式市場の株価状況を組み合わせて予測する。
論文 参考訳(メタデータ) (2024-07-23T03:26:07Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
この研究は、既存の株価予測手法に関する文献に基づいており、機械学習とディープラーニングアプローチへのシフトを強調している。
LSTMモデルでは、NSE、インドに上場している18のセクターで180銘柄の歴史的株価を用いて、将来の価格を予測する。
その結果,株価を正確に予測し,投資決定を下す上でLSTMモデルの有効性が示された。
論文 参考訳(メタデータ) (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
LSTM-SSAM(Sequential Self-Attention Mechanism)を用いたLong Short-Term Memory(LSTM)というモデルを提案する。
SBIN,BANK,BANKBARODAの3つのストックデータセットについて広範な実験を行った。
実験により,既存のモデルと比較して,提案モデルの有効性と妥当性が示された。
論文 参考訳(メタデータ) (2023-08-07T14:21:05Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - FinBERT-LSTM: Deep Learning based stock price prediction using News
Sentiment Analysis [0.0]
市場における短期的な動きを予測することで、投資家は投資に対するリターンを大きく得ることができる。
私たちはDeep Learning Networkを使って株価を予測し、財務、ビジネス、テクノロジーのニュース記事を同化しています。
論文 参考訳(メタデータ) (2022-11-11T15:13:16Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。