Using Simulation Optimization to Improve Zero-shot Policy Transfer of
Quadrotors
- URL: http://arxiv.org/abs/2201.01369v1
- Date: Tue, 4 Jan 2022 22:32:05 GMT
- Title: Using Simulation Optimization to Improve Zero-shot Policy Transfer of
Quadrotors
- Authors: Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte, Klaus
Diepold
- Abstract summary: We show that it is possible to train low-level control policies with reinforcement learning entirely in simulation and deploy them on a quadrotor robot without using real-world data to fine-tune.
Our neural network-based policies use only onboard sensor data and run entirely on the embedded drone hardware.
- Score: 0.14999444543328289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we show that it is possible to train low-level control policies
with reinforcement learning entirely in simulation and, then, deploy them on a
quadrotor robot without using real-world data to fine-tune. To render zero-shot
policy transfers feasible, we apply simulation optimization to narrow the
reality gap. Our neural network-based policies use only onboard sensor data and
run entirely on the embedded drone hardware. In extensive real-world
experiments, we compare three different control structures ranging from
low-level pulse-width-modulated motor commands to high-level attitude control
based on nested proportional-integral-derivative controllers. Our experiments
show that low-level controllers trained with reinforcement learning require a
more accurate simulation than higher-level control policies.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Learning to Fly in Seconds [7.259696592534715]
We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times.
Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct control after only 18 seconds of training on a consumer-grade laptop.
arXiv Detail & Related papers (2023-11-22T01:06:45Z) - Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot [19.789369416528604]
grasp force control aims to manipulate objects safely by limiting the amount of force exerted on the object.
Prior works have either hand-modeled their force controllers, employed model-based approaches, or have not shown sim-to-real transfer.
We propose a model-free deep reinforcement learning approach trained in simulation and then transferred to the robot without further fine-tuning.
arXiv Detail & Related papers (2023-11-13T11:29:06Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter
Learning for Bipedal Locomotion Control [17.37169551675587]
We propose a multi-domain control parameter learning framework for locomotion control of bipedal robots.
We leverage BO to learn the control parameters used in the HZD-based controller.
Next, the learning process is applied on the physical robot to learn for corrections to the control parameters learned in simulation.
arXiv Detail & Related papers (2022-03-04T20:48:17Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.