Asynchronism and nonequilibrium phase transitions in $(1+1)$D quantum
cellular automata
- URL: http://arxiv.org/abs/2201.01557v1
- Date: Wed, 5 Jan 2022 11:59:07 GMT
- Title: Asynchronism and nonequilibrium phase transitions in $(1+1)$D quantum
cellular automata
- Authors: Edward Gillman, Federico Carollo and Igor Lesanovsky
- Abstract summary: We show how asynchronism -- introduced via non-commuting gates -- impacts on the collective nonequilibrium behavior of quantum cellular automata.
Our results show how quantum effects may lead to abrupt changes of non-equilibrium dynamics, which may be relevant for understanding the role of quantum correlations in neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Probabilistic cellular automata provide a simple framework for the
exploration of classical nonequilibrium processes. Recently, quantum cellular
automata have been proposed that rely on the propagation of a one-dimensional
quantum state along a fictitious discrete time dimension via the sequential
application of quantum gates. The resulting $(1+1)$-dimensional space-time
structure makes these automata special cases of feed-forward quantum neural
networks. Here we show how asynchronism -- introduced via non-commuting gates
-- impacts on the collective nonequilibrium behavior of quantum cellular
automata. We illustrate this through a simple model, whose synchronous version
implements a contact process and features a nonequilibrium phase transition in
the directed percolation universality class. Non-commuting quantum gates lead
to an "asynchronism transition", i.e. a sudden qualitative change in the phase
transition behavior once a certain degree of asynchronicity is surpassed. Our
results show how quantum effects may lead to abrupt changes of non-equilibrium
dynamics, which may be relevant for understanding the role of quantum
correlations in neural networks.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Using (1 + 1)D Quantum Cellular Automata for Exploring Collective
Effects in Large Scale Quantum Neural Networks [0.0]
We study the impact of quantum effects on the way in which quantum perceptrons and neural networks process information.
We exploit a class of quantum gates that allow for the introduction of quantum effects, such as those associated with a coherent Hamiltonian evolution.
We identify a change of critical behavior when quantum effects are varied, demonstrating that they can indeed affect the collective dynamical behavior underlying the processing of information in large-scale neural networks.
arXiv Detail & Related papers (2022-07-24T17:10:12Z) - Quantum and classical temporal correlations in $(1 + 1)D$ Quantum
Cellular Automata [0.0]
We study entanglement and coherence near criticality in quantum systems that display non-equilibrium steady-state phase transitions.
Our analysis is based on quantum generalizations of classical non-equilibrium systems.
arXiv Detail & Related papers (2021-04-09T09:58:42Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Non-equilibrium phase transitions in $(1+1)$-dimensional quantum
cellular automata with controllable quantum correlations [0.0]
We introduce and investigate the dynamics of a class of $(1+1)$-dimensional quantum cellular automata.
We show that projected entangled pair state tensor networks permit a natural and efficient representation of the cellular automaton.
arXiv Detail & Related papers (2020-02-21T11:47:01Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.