論文の概要: Machine-Learning the Classification of Spacetimes
- arxiv url: http://arxiv.org/abs/2201.01644v1
- Date: Wed, 5 Jan 2022 14:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-07 15:43:13.770821
- Title: Machine-Learning the Classification of Spacetimes
- Title(参考訳): 機械学習による時空の分類
- Authors: Yang-Hui He, Juan Manuel P\'erez Ipi\~na
- Abstract要約: 我々は、機械学習と現代のデータサイエンスから実りある技術を採用することで、新しい視点を採っている。
特に、ペトロフの時空分類をモデル化し、フィードフォワードニューラルネットワークが高い成功率を達成することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On the long-established classification problems in general relativity we take
a novel perspective by adopting fruitful techniques from machine learning and
modern data-science. In particular, we model Petrov's classification of
spacetimes, and show that a feed-forward neural network can achieve high degree
of success. We also show how data visualization techniques with dimensionality
reduction can help analyze the underlying patterns in the structure of the
different types of spacetimes.
- Abstract(参考訳): 一般相対性理論における長い間確立されてきた分類問題について,機械学習や現代データサイエンスによる実りある手法を採用することにより,新しい視点を採る。
特に、ペトロフの時空分類をモデル化し、フィードフォワードニューラルネットワークが高い成功率を達成可能であることを示す。
また,次元化によるデータ可視化手法は,様々な時空の構造の基盤となるパターンを分析するのにどのように役立つかを示す。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Robust Feature Disentanglement in Imaging Data via Joint Invariant
Variational Autoencoders: from Cards to Atoms [0.0]
関節回転(および翻訳)不変変分オートエンコーダ(j-trVAE)を導入する。
この方法の性能は、いくつかの合成データセットで検証され、電子および走査プローブ顕微鏡の高分解能イメージングデータに拡張されます。
強誘電体材料と量子系の既知の物理学に直接関連する潜在空間の挙動を示す。
論文 参考訳(メタデータ) (2021-04-20T18:01:55Z) - Geo-Spatiotemporal Features and Shape-Based Prior Knowledge for
Fine-grained Imbalanced Data Classification [63.916371837696396]
細粒度分類は、類似のグローバル知覚とパターンを持つ項目を区別することを目的としているが、細部によって異なる。
私たちの主な課題は、小さなクラス間バリエーションと大きなクラス内バリエーションの両方から来ています。
我々は,野生生物の利用事例における細粒度分類を改善するため,いくつかの革新を組み合わせることを提案する。
論文 参考訳(メタデータ) (2021-03-21T02:01:38Z) - Quadric hypersurface intersection for manifold learning in feature space [52.83976795260532]
適度な高次元と大きなデータセットに適した多様体学習技術。
この手法は、二次超曲面の交点という形で訓練データから学習される。
テスト時、この多様体は任意の新しい点に対する外れ値スコアを導入するのに使うことができる。
論文 参考訳(メタデータ) (2021-02-11T18:52:08Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
本稿では,グローバルに結合した地図システムから生じるマクロな動きについて考察する。
我々は、機械学習アプローチと粗粒度プロセスの遷移確率の直接数値計算の両方を用いて、マクロ力学のための粗粒度マルコフプロセスを構築した。
我々は,アトラクタの有効次元,メモリ効果の持続性,ダイナミクスのマルチスケール構造について重要な情報を推測することができる。
論文 参考訳(メタデータ) (2020-11-08T15:38:12Z) - A Topological Framework for Deep Learning [0.7310043452300736]
機械学習における分類問題は、非常に穏やかな条件下では常に解決可能であることを示す。
特に,ソフトマックス分類ネットワークは,有限列の位相移動によって入力位相空間に作用し,その分類処理を実現する。
論文 参考訳(メタデータ) (2020-08-31T15:56:42Z) - Space-Time Domain Tensor Neural Networks: An Application on Human Pose
Classification [12.965269872510587]
人間のポーズの分類のための空間的・時間的認識型テンソルベースニューラルネットワークを提案する。
我々のモデルはエンドツーエンドのトレーニング可能であり、少数のトレーニング可能なパラメータによって特徴づけられる。
提案手法を実験的に評価することにより,最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-04-17T10:20:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。