論文の概要: NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task
Financial Forecasting
- arxiv url: http://arxiv.org/abs/2201.01770v1
- Date: Wed, 5 Jan 2022 10:17:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-07 14:41:26.823137
- Title: NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task
Financial Forecasting
- Title(参考訳): NumHTML:マルチタスク財務予測のための数値指向階層型トランスフォーマモデル
- Authors: Linyi Yang, Jiazheng Li, Ruihai Dong, Yue Zhang, Barry Smyth
- Abstract要約: 本稿では,マルチモーダル・アライン・ファイナンス・コールデータを用いて,株価リターンと金融リスクを予測する数値指向階層型トランスフォーマーモデルについて述べる。
実世界の公開データセットを用いて,いくつかの最先端ベースラインに対するNum HTMLの総合的な評価結果を示す。
- 参考スコア(独自算出の注目度): 17.691653056521904
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Financial forecasting has been an important and active area of machine
learning research because of the challenges it presents and the potential
rewards that even minor improvements in prediction accuracy or forecasting may
entail. Traditionally, financial forecasting has heavily relied on quantitative
indicators and metrics derived from structured financial statements. Earnings
conference call data, including text and audio, is an important source of
unstructured data that has been used for various prediction tasks using deep
earning and related approaches. However, current deep learning-based methods
are limited in the way that they deal with numeric data; numbers are typically
treated as plain-text tokens without taking advantage of their underlying
numeric structure. This paper describes a numeric-oriented hierarchical
transformer model to predict stock returns, and financial risk using
multi-modal aligned earnings calls data by taking advantage of the different
categories of numbers (monetary, temporal, percentages etc.) and their
magnitude. We present the results of a comprehensive evaluation of NumHTML
against several state-of-the-art baselines using a real-world publicly
available dataset. The results indicate that NumHTML significantly outperforms
the current state-of-the-art across a variety of evaluation metrics and that it
has the potential to offer significant financial gains in a practical trading
context.
- Abstract(参考訳): 金融予測は機械学習研究の重要かつ活発な分野であり、その課題と、予測の正確性や予測の微妙な改善が伴う潜在的な報酬がある。
伝統的に、金融予測は構造化された財務諸表に由来する定量的指標と指標に大きく依存してきた。
テキストや音声を含む決算会議通話データは、非構造化データの重要な情報源であり、深層採得と関連するアプローチを用いて様々な予測タスクに使用されている。
しかし、現在のディープラーニングベースの方法は数値データを扱う方法で制限されており、数値は基礎となる数値構造を生かさずに平文トークンとして扱われる。
本稿では,株価収益予測のための数値指向階層的トランスフォーマーモデルと,複数のモーダルアライン決算電話データを用いた金融リスクについて,数値の異なるカテゴリ(収益,時間的,割合など)とその大きさを生かして述べる。
実世界の公開データセットを用いて,いくつかの最先端ベースラインに対するNumHTMLの総合評価結果を示す。
以上の結果から,NumHTMLはさまざまな評価指標において,現在の最先端を著しく上回り,実践的な取引状況において大きな経済的利益をもたらす可能性が示唆された。
関連論文リスト
- Quantifying Qualitative Insights: Leveraging LLMs to Market Predict [0.0]
本研究は、証券会社からの日々の報告を活用して高品質な文脈情報を作成することによる課題に対処する。
レポートはテキストベースのキーファクタにセグメント化され、価格情報などの数値データと組み合わせてコンテキストセットを形成する。
工芸的なプロンプトは重要な要素にスコアを割り当て、質的な洞察を定量的な結果に変換するように設計されている。
論文 参考訳(メタデータ) (2024-11-13T07:45:40Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
ファイナンシャルディストレス予測(Financial Distress Prediction)は、失敗する構造物の数と確率を正確に予測することで、経済において重要な役割を果たす。
しかし、中小企業にとっての財政難の予測は、そのあいまいさが原因で困難である。
本稿では,金融データの薄面成分分析,コーポレートガバナンスの質,および市場交換データを関連ベクタマシンに組み込んだ企業FCPモデルを提案する。
論文 参考訳(メタデータ) (2023-02-23T15:58:30Z) - Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis
of BERT Classifiers and Weak Supervision [6.624726878647541]
我々は、テキストデータがラベル付けされていない問題に対処するための、最近提案されたNLPアプローチである弱い学習を導入する。
弱いラベルを用いた微調整は、テキストベースの特徴の予測値を高め、暗号通貨のリターンを予測する文脈で予測精度を高めることを確認した。
より根本的には、我々が提示するモデリングパラダイム、弱いラベル付けドメイン固有テキスト、微調整済みNLPモデルは、(金融)予測において普遍的に適用可能である。
論文 参考訳(メタデータ) (2022-04-06T07:45:05Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
金融市場の動きを予測する新しい1次元畳み込みニューラルネットワーク(CNN)モデルを提案する。
カスタマイズされた1次元畳み込み層は、時間を通じて金融取引データをスキャンし、価格やボリュームなどの異なる種類のデータ、共有パラメータ(カーネル)を互いに共有する。
我々のモデルは従来の技術指標の代わりに自動的に特徴を抽出する。
論文 参考訳(メタデータ) (2021-04-05T19:36:48Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。