論文の概要: Hidden Agenda: a Social Deduction Game with Diverse Learned Equilibria
- arxiv url: http://arxiv.org/abs/2201.01816v1
- Date: Wed, 5 Jan 2022 20:54:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-07 23:03:01.130815
- Title: Hidden Agenda: a Social Deduction Game with Diverse Learned Equilibria
- Title(参考訳): hidden agenda: 多様な学習均衡を持つ社会的推論ゲーム
- Authors: Kavya Kopparapu, Edgar A. Du\'e\~nez-Guzm\'an, Jayd Matyas, Alexander
Sasha Vezhnevets, John P. Agapiou, Kevin R. McKee, Richard Everett, Janusz
Marecki, Joel Z. Leibo, Thore Graepel
- Abstract要約: 社会的推論ゲームは、個人が他人に関する潜在的に信頼できない情報を合成する方法を学ぶための道を提供する。
本研究では,未知のチームアライメントのシナリオにおいて,学習エージェントを研究するための2D環境を提供する2チームソーシャル推論ゲームであるHidden Agendaを紹介する。
Hidden Agendaで訓練された強化学習エージェントは、自然言語でのコミュニケーションを必要とせずに、協力や投票など、さまざまな行動を学ぶことができることを示した。
- 参考スコア(独自算出の注目度): 57.74495091445414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge in the study of multiagent cooperation is the need for
individual agents not only to cooperate effectively, but to decide with whom to
cooperate. This is particularly critical in situations when other agents have
hidden, possibly misaligned motivations and goals. Social deduction games offer
an avenue to study how individuals might learn to synthesize potentially
unreliable information about others, and elucidate their true motivations. In
this work, we present Hidden Agenda, a two-team social deduction game that
provides a 2D environment for studying learning agents in scenarios of unknown
team alignment. The environment admits a rich set of strategies for both teams.
Reinforcement learning agents trained in Hidden Agenda show that agents can
learn a variety of behaviors, including partnering and voting without need for
communication in natural language.
- Abstract(参考訳): マルチエージェント協調の研究における重要な課題は、個々のエージェントが効果的に協力するだけでなく、誰と協力するかを決める必要があることである。
これは、他のエージェントが隠され、おそらく不整合のモチベーションと目標を持つ状況において特に重要である。
社会的推論ゲームは、個人が他人に関する潜在的に信頼できない情報を合成し、真の動機を解明する方法を学ぶための手段を提供する。
本研究では,未知のチームアライメントのシナリオにおいて,学習エージェントを研究するための2D環境を提供する2チームソーシャル推論ゲームであるHidden Agendaを紹介する。
環境は両方のチームにとって豊富な戦略の集合を認めます。
Hidden Agendaで訓練された強化学習エージェントは、自然言語でのコミュニケーションを必要とせずに、協力や投票など、さまざまな行動を学ぶことができる。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - AMONGAGENTS: Evaluating Large Language Models in the Interactive Text-Based Social Deduction Game [12.384945632524424]
本稿では,シミュレーション環境における人間行動のプロキシの作成に焦点をあてる。
我々の研究は、最先端の大規模言語モデル(LLM)がゲームルールを効果的に把握し、現在の状況に基づいて意思決定できることを示した。
論文 参考訳(メタデータ) (2024-07-23T14:34:38Z) - A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
本稿では、プレイヤーがゴール状態自体を交渉しなければならない2Dオブジェクト配置ゲームを提案する。
我々は,人間プレイヤーが様々な役割を担っていることを実証的に示し,バランスの取れた協調によってタスクのパフォーマンスが向上することを示した。
論文 参考訳(メタデータ) (2024-06-12T13:35:10Z) - Learning Communication Policies for Different Follower Behaviors in a
Collaborative Reference Game [22.28337771947361]
協調参照ゲームにおいて、仮定されたパートナー行動に対するニューラルネットワークエージェントの適応性を評価する。
以上の結果から, この新規成分は, より冗長なコミュニケーション戦略につながることが示唆された。
論文 参考訳(メタデータ) (2024-02-07T13:22:17Z) - Cooperation on the Fly: Exploring Language Agents for Ad Hoc Teamwork in
the Avalon Game [25.823665278297057]
本研究は,自然言語によって駆動される環境下でエージェントが動作する,アドホックなチームワークの問題に焦点を当てる。
チームコラボレーションにおけるLLMエージェントの可能性を明らかにするとともに,コミュニケーションにおける幻覚に関連する課題を明らかにする。
この問題に対処するため,LLMに拡張メモリとコード駆動推論を備えた汎用エージェントであるCodeActを開発した。
論文 参考訳(メタデータ) (2023-12-29T08:26:54Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は,競争行動の社会的影響に基づく新しい強化学習機構を提案する。
提案モデルでは, 人工エージェントの学習を調節するための競合スコアを導出するために, 客観的, 社会的認知的メカニズムを集約する。
論文 参考訳(メタデータ) (2022-08-22T14:06:06Z) - Cooperative Artificial Intelligence [0.0]
我々は,ゲーム理論と人工知能の交わりに関する研究の必要性を論じる。
本稿では,外部エージェントが人工学習者の協調を促進する方法について議論する。
また, 計画エージェントをオフにしても, 結果が一定のゲームにおいて安定であることを示す。
論文 参考訳(メタデータ) (2022-02-20T16:50:37Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は、競合する社会的影響に基づく新しい学習メカニズムの提供に焦点を当てる。
本研究は,競争競合の概念に基づいて,これらのエージェントの評価を人的視点から変えられるかを検討することを目的とする。
論文 参考訳(メタデータ) (2020-11-02T21:54:18Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
我々はFortAttackと呼ばれる競合するマルチエージェント環境を開発し、2つのチームが互いに競合する。
このような振る舞いがチームの成功に繋がる場合、同種エージェント間の異種行動の自然発生を観察する。
我々は、進化した反対戦略を利用して、友好的なエージェントのための単一のポリシーを訓練するアンサンブルトレーニングを提案する。
論文 参考訳(メタデータ) (2020-07-06T22:35:56Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
本稿では,競争力のあるマルチプレイヤーカードゲームの現実的な実装を学習・プレイするために,一般的な強化学習アルゴリズムをどのように適用できるかについて検討する。
本研究は,学習エージェントに対して,エージェントが競争力を持つことの学習方法を評価するための特定のトレーニングと検証ルーチンを提案し,それらが相互の演奏スタイルにどのように適応するかを説明する。
論文 参考訳(メタデータ) (2020-04-08T14:11:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。