Learned Compression for Images and Point Clouds
- URL: http://arxiv.org/abs/2409.08376v1
- Date: Thu, 12 Sep 2024 19:57:44 GMT
- Title: Learned Compression for Images and Point Clouds
- Authors: Mateen Ulhaq,
- Abstract summary: This thesis provides three primary contributions to this new field of learned compression.
First, we present an efficient low-complexity entropy model that dynamically adapts the encoding distribution to a specific input by compressing and transmitting the encoding distribution itself as side information.
Secondly, we propose a novel lightweight low-complexity point cloud that is highly specialized for classification, attaining significant reductions in compared to non-specialized codecs.
- Score: 1.7404865362620803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last decade, deep learning has shown great success at performing computer vision tasks, including classification, super-resolution, and style transfer. Now, we apply it to data compression to help build the next generation of multimedia codecs. This thesis provides three primary contributions to this new field of learned compression. First, we present an efficient low-complexity entropy model that dynamically adapts the encoding distribution to a specific input by compressing and transmitting the encoding distribution itself as side information. Secondly, we propose a novel lightweight low-complexity point cloud codec that is highly specialized for classification, attaining significant reductions in bitrate compared to non-specialized codecs. Lastly, we explore how motion within the input domain between consecutive video frames is manifested in the corresponding convolutionally-derived latent space.
Related papers
- High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Microdosing: Knowledge Distillation for GAN based Compression [18.140328230701233]
We show how to leverage knowledge distillation to obtain equally capable image decoders at a fraction of the original number of parameters.
This allows us to reduce the model size by a factor of 20 and to achieve 50% reduction in decoding time.
arXiv Detail & Related papers (2022-01-07T14:27:16Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
We propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network.
In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides.
arXiv Detail & Related papers (2020-03-04T09:31:37Z) - Video Coding for Machines: A Paradigm of Collaborative Compression and
Intelligent Analytics [127.65410486227007]
Video coding, which targets to compress and reconstruct the whole frame, and feature compression, which only preserves and transmits the most critical information, stand at two ends of the scale.
Recent endeavors in imminent trends of video compression, e.g. deep learning based coding tools and end-to-end image/video coding, and MPEG-7 compact feature descriptor standards, promote the sustainable and fast development in their own directions.
In this paper, thanks to booming AI technology, e.g. prediction and generation models, we carry out exploration in the new area, Video Coding for Machines (VCM), arising from the emerging MPEG
arXiv Detail & Related papers (2020-01-10T17:24:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.