論文の概要: Fast optimal structures generator for parameterized quantum circuits
- arxiv url: http://arxiv.org/abs/2201.03309v2
- Date: Mon, 11 Apr 2022 02:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 19:55:36.745432
- Title: Fast optimal structures generator for parameterized quantum circuits
- Title(参考訳): パラメータ化量子回路のための高速最適構造生成器
- Authors: Chuangtao Chen, Zhimin He, Shenggen Zheng, Yan Zhou, Haozhen Situ
- Abstract要約: 現在の構造最適化アルゴリズムは、変分量子アルゴリズム(VQA)の新しいタスクごとにスクラッチから量子回路の構造を最適化する
本稿では,量子ゲート数を自動的に決定し,新しいタスクに最適な構造を直接生成する,VQAの高速構造最適化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.655660925754175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current structure optimization algorithms optimize the structure of quantum
circuit from scratch for each new task of variational quantum algorithms (VQAs)
without using any prior experience, which is inefficient and time-consuming.
Besides, the number of quantum gates is a hyper-parameter of these algorithms,
which is difficult and time-consuming to determine. In this paper, we propose a
rapid structure optimization algorithm for VQAs which automatically determines
the number of quantum gates and directly generates the optimal structures for
new tasks with the meta-trained graph variational autoencoder (VAE) on a number
of training tasks. We also develop a meta-trained predictor to filter out
circuits with poor performances to further accelerate the algorithm. Simulation
results show that our method output structures with lower loss and it is 70
times faster in running time compared to a state-of-the-art algorithm, namely
DQAS.
- Abstract(参考訳): 現在の構造最適化アルゴリズムは、従来の経験を使わずに、変動量子アルゴリズム(VQA)の新たなタスクごとに、スクラッチから量子回路の構造を最適化する。
さらに、量子ゲートの数はこれらのアルゴリズムのハイパーパラメータであり、決定が困難で時間がかかる。
本稿では,VQAの高速な構造最適化アルゴリズムを提案する。このアルゴリズムは,量子ゲートの数を自動決定し,メタトレーニングされたグラフ変分オートエンコーダ(VAE)を用いて,新しいタスクの最適構造を直接生成する。
また,性能の悪い回路をフィルタするメタ学習予測器を開発し,アルゴリズムをさらに高速化する。
シミュレーションの結果,本手法は,最先端アルゴリズムであるdqasと比較して,損失が少なく実行時間も70倍高速であることがわかった。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
本研究は、VQAデプロイメントにおける課題に対処するために設計されたカリキュラムベースの強化学習QAS(CRLQAS)を導入する。
このアルゴリズムは、(i)環境力学の3Dアーキテクチャを符号化し、回路の探索空間を効率的に探索する。
研究を容易にするため,雑音量子回路の計算効率を大幅に向上させる最適化シミュレータを開発した。
論文 参考訳(メタデータ) (2024-02-05T20:33:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
教師なし表現学習は量子アーキテクチャ探索(QAS)を前進させる新しい機会を提供する
QASは変分量子アルゴリズム(VQA)のための量子回路を最適化するように設計されている
論文 参考訳(メタデータ) (2024-01-21T19:53:17Z) - Sequential minimum optimization algorithm with small sample size
estimators [0.06445605125467573]
逐次最小最適化は、機械学習のグローバル検索訓練アルゴリズムである。
本手法をフォトニクス回路に適用することにより,偶然事象の頻度の低さがアルゴリズムの速度を低下させるという新たな課題が生じる。
論文 参考訳(メタデータ) (2023-03-02T06:02:46Z) - TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze [0.0]
TETRIS-ADAPT-VQEと呼ばれるアルゴリズムを導入する。
その結果、CNOTゲートの数や変動パラメータを増大させることなく、より密度が高く、より浅い回路が得られる。
これらの改善により、量子ハードウェアに実用的な量子優位性を示すという目標に近づきます。
論文 参考訳(メタデータ) (2022-09-21T18:00:02Z) - Recommender System Expedited Quantum Control Optimization [0.0]
量子制御最適化アルゴリズムは、最適な量子ゲートや効率的な量子状態転送を生成するために日常的に使用される。
効率的な最適化アルゴリズムの設計には2つの大きな課題がある。
本稿では,後者の課題に対処するため,機械学習手法,特にレコメンダシステム(RS)を提案する。
論文 参考訳(メタデータ) (2022-01-29T10:25:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。