論文の概要: TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze
- arxiv url: http://arxiv.org/abs/2209.10562v1
- Date: Wed, 21 Sep 2022 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 20:38:18.689292
- Title: TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze
- Title(参考訳): TETRIS-ADAPT-VQE: より浅い、より密度の高い回路Ans\atzeを生成する適応アルゴリズム
- Authors: Panagiotis G. Anastasiou, Yanzhu Chen, Nicholas J. Mayhall, Edwin
Barnes, Sophia E. Economou
- Abstract要約: TETRIS-ADAPT-VQEと呼ばれるアルゴリズムを導入する。
その結果、CNOTゲートの数や変動パラメータを増大させることなく、より密度が高く、より浅い回路が得られる。
これらの改善により、量子ハードウェアに実用的な量子優位性を示すという目標に近づきます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive quantum variational algorithms are particularly promising for
simulating strongly correlated systems on near-term quantum hardware, but they
are not yet viable due, in large part, to the severe coherence time limitations
on current devices. In this work, we introduce an algorithm called
TETRIS-ADAPT-VQE, which iteratively builds up variational ans\"atze a few
operators at a time in a way dictated by the problem being simulated. This
algorithm is a modified version of the ADAPT-VQE algorithm in which the
one-operator-at-a-time rule is lifted to allow for the addition of multiple
operators with disjoint supports in each iteration. TETRIS-ADAPT-VQE results in
denser but significantly shallower circuits, without increasing the number of
CNOT gates or variational parameters. Its advantage over the original algorithm
in terms of circuit depths increases with the system size. Moreover, the
expensive step of measuring the energy gradient with respect to each candidate
unitary at each iteration is performed only a fraction of the time compared to
ADAPT-VQE. These improvements bring us closer to the goal of demonstrating a
practical quantum advantage on quantum hardware.
- Abstract(参考訳): アダプティブ量子変分アルゴリズムは、短期量子ハードウェア上で強相関系をシミュレートするのに特に有望であるが、そのほとんどが現在のデバイスにおける厳密なコヒーレンス時間制限のため、まだ実現不可能である。
そこで本研究では,TETRIS-ADAPT-VQEと呼ばれるアルゴリズムを導入する。
このアルゴリズムはADAPT-VQEアルゴリズムの修正版で、1-operator-at-a-timeルールを解除し、複数の演算子の追加を可能にする。
TETRIS-ADAPT-VQEは、CNOTゲート数や変動パラメータを増大させることなく、より密度が高く、より浅い回路をもたらす。
回路深さの点での元のアルゴリズムに対する利点は、システムサイズによって増大する。
また、ADAPT-VQEと比較して、各イテレーションにおける各候補単位に対するエネルギー勾配を測定するための高価なステップをわずかに行う。
これらの改善により、量子ハードウェアに実用的な量子優位性を示すという目標に近づきます。
関連論文リスト
- Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
AVQDS(T)と呼ばれる適応変分量子力学シミュレーション(AVQDS)法の改良版を示す。
このアルゴリズムは、変分力学の精度の尺度であるマクラクラン距離を一定しきい値以下に保つために、アンザッツ回路に不連結なユニタリゲートの層を適応的に加算する。
また、雑音耐性を増強した変動パラメータに対する線形運動方程式を解くために、固有値トランケーションに基づく手法を示す。
論文 参考訳(メタデータ) (2024-08-13T02:56:43Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
雑音は量子回路のバイアスによる目的関数の評価を行う。
我々は、欠落した保証を導き、収束率が影響を受けないことを見出す。
論文 参考訳(メタデータ) (2022-09-21T19:18:41Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Variational determination of arbitrarily many eigenpairs in one quantum
circuit [8.118991737495524]
変分量子固有解法 (VQE) が基底状態の計算に初めて導入された。
我々は,多くの低エネルギー固有状態を同時に決定する新しいアルゴリズムを提案する。
本アルゴリズムは,回路の複雑度と読み出し誤差を大幅に低減する。
論文 参考訳(メタデータ) (2022-06-22T13:01:37Z) - Robust resource-efficient quantum variational ansatz through
evolutionary algorithm [0.46180371154032895]
Vari Quantum Algorithm (VQAsational) は、短期デバイスにおける量子優位性を実証するための有望な手法である。
我々は、広く使われているハードウェア効率の良いアンサッツのような固定VQA回路設計は、必ずしも不完全性に対して堅牢ではないことを示す。
本稿では,ゲノム長調整可能な進化アルゴリズムを提案し,回路アンサッツおよびゲートパラメータの変動に最適化されたロバストなVQA回路を設計する。
論文 参考訳(メタデータ) (2022-02-28T12:14:11Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。