Noise Improvements in Quantum Simulations of sQED using Qutrits
- URL: http://arxiv.org/abs/2201.04546v1
- Date: Wed, 12 Jan 2022 16:41:52 GMT
- Title: Noise Improvements in Quantum Simulations of sQED using Qutrits
- Authors: Erik Gustafson
- Abstract summary: We present an argument for the advantages of using qudits over qubits for scalar Quantum Electrodynamics.
We find that 20 per-cent accuracy on the mass gap could be possible in the near future with a qutrits but is infeasible using qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an argument for the advantages of using qudits over qubits for
scalar Quantum Electrodynamics in $(1+1)$d. We measure the mass gap using an
out of time correlator as a function of noise coming from an amplitude damping
error channel and a generalized Pauli channel decoherence channel for both
qubits and qutrits. For the same error in determination of the mass, the qutrit
simulations can tolerate 10 to 100x larger gate noise than a qubit simulations.
We find that 20 per-cent accuracy on the mass gap could be possible in the near
future with a qutrits but is infeasible using qubits.
Related papers
- Fault Tolerance Embedded in a Quantum-Gap-Estimation Algorithm with Trial-State Optimization [0.0]
We show that the spectral peak of an exact target gap can be amplified beyond the noise threshold, thereby reducing gap-estimate error.
Our results reveal the potential for accurate quantum simulations on near-term noisy quantum computers.
arXiv Detail & Related papers (2024-05-16T17:57:15Z) - Benchmarking digital quantum simulations above hundreds of qubits using quantum critical dynamics [42.29248343585333]
We benchmark quantum hardware and error mitigation techniques on up to 133 qubits.
We show reliable control up to a two-qubit gate depth of 28, featuring a maximum of 1396 two-qubit gates.
Results are transferable to applications such as Hamiltonian simulation, variational algorithms, optimization, or quantum machine learning.
arXiv Detail & Related papers (2024-04-11T18:00:05Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Study of noise in virtual distillation circuits for quantum error mitigation [0.0]
We study the effect of uncorrelated, identical noise in the cyclic permutation circuit.
We find that the estimation of expectation value of observables are robust against dephasing noise.
Our results imply that a broad class of quantum algorithms can be implemented with higher accuracy in the near-term.
arXiv Detail & Related papers (2022-10-27T10:56:35Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Quantum error mitigation via matrix product operators [27.426057220671336]
Quantum error mitigation (QEM) can suppress errors in measurement results via repeated experiments and post decomposition of data.
MPO representation increases the accuracy of modeling noise without consuming more experimental resources.
Our method is hopeful of being applied to circuits in higher dimensions with more qubits and deeper depth.
arXiv Detail & Related papers (2022-01-03T16:57:43Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Error mitigation with Clifford quantum-circuit data [0.8258451067861933]
We propose a novel, scalable error-mitigation method that applies to gate-based quantum computers.
The method generates training data $X_itextnoisy,X_itextexact$ via quantum circuits composed largely of Clifford gates.
We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates.
arXiv Detail & Related papers (2020-05-20T16:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.