Study of noise in virtual distillation circuits for quantum error mitigation
- URL: http://arxiv.org/abs/2210.15317v2
- Date: Wed, 10 Jul 2024 09:23:23 GMT
- Title: Study of noise in virtual distillation circuits for quantum error mitigation
- Authors: Pontus VikstÄl, Giulia Ferrini, Shruti Puri,
- Abstract summary: We study the effect of uncorrelated, identical noise in the cyclic permutation circuit.
We find that the estimation of expectation value of observables are robust against dephasing noise.
Our results imply that a broad class of quantum algorithms can be implemented with higher accuracy in the near-term.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtual distillation has been proposed as an error mitigation protocol for estimating the expectation values of observables in quantum algorithms. It proceeds by creating a cyclic permutation of $M$ noisy copies of a quantum state using a sequence of controlled-swap gates. If the noise does not shift the dominant eigenvector of the density operator away from the ideal state, then the error in expectation-value estimation can be exponentially reduced with $M$. In practice, subsequent error mitigation techniques are required to suppress the effect of noise in the cyclic permutation circuit itself, leading to increased experimental complexity. Here, we perform a careful analysis of the effect of uncorrelated, identical noise in the cyclic permutation circuit and find that the estimation of expectation value of observables are robust against dephasing noise. We support the analytical result with numerical simulations and find that $67\%$ of errors are reduced for $M=2$, with physical dephasing error probabilities as high as $10\%$. Our results imply that a broad class of quantum algorithms can be implemented with higher accuracy in the near-term with qubit platforms where non-dephasing errors are suppressed, such as superconducting bosonic qubits and Rydberg atoms.
Related papers
- Fault Tolerance Embedded in a Quantum-Gap-Estimation Algorithm with Trial-State Optimization [0.0]
We show that the spectral peak of an exact target gap can be amplified beyond the noise threshold, thereby reducing gap-estimate error.
Our results reveal the potential for accurate quantum simulations on near-term noisy quantum computers.
arXiv Detail & Related papers (2024-05-16T17:57:15Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Emergence of noise-induced barren plateaus in arbitrary layered noise
models [44.99833362998488]
In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem.
We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model.
arXiv Detail & Related papers (2023-10-12T15:18:27Z) - Simulation and analysis of quantum phase estimation algorithm in the
presence of incoherent quantum noise channels [0.0]
We study the impact of incoherent noise on quantum algorithms, modeled as trace-preserving and completely positive quantum channels.
The simulation results indicate that the standard deviation of the eigenvalue of the unitary operator has strong exponential dependence upon the error probability of individual qubits.
arXiv Detail & Related papers (2023-07-28T17:08:56Z) - Compressed quantum error mitigation [0.0]
We introduce a quantum error mitigation technique based on probabilistic error cancellation to eliminate errors which have accumulated during the application of a quantum circuit.
For a simple noise model, we show that efficient, local denoisers can be found, and we demonstrate their effectiveness for the digital quantum simulation of the time evolution of simple spin chains.
arXiv Detail & Related papers (2023-02-10T19:00:02Z) - Error-aware Quantization through Noise Tempering [43.049102196902844]
Quantization-aware training (QAT) optimize model parameters with respect to the end task while simulating quantization error.
In this work, we incorporate exponentially decaying quantization-error-aware noise together with a learnable scale of task loss gradient to approximate the effect of a quantization operator.
Our method obtains state-of-the-art top-1 classification accuracy for uniform (non mixed-precision) quantization, out-performing previous methods by 0.5-1.2% absolute.
arXiv Detail & Related papers (2022-12-11T20:37:50Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Quasiprobability decompositions with reduced sampling overhead [4.38301148531795]
Quantum error mitigation techniques can reduce noise on current quantum hardware without the need for fault-tolerant quantum error correction.
We present a new algorithm based on mathematical optimization that aims to choose the quasiprobability decomposition in a noise-aware manner.
arXiv Detail & Related papers (2021-01-22T19:00:06Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.