Heralding Quantum Entanglement between Two Room-Temperature Atomic
Ensembles
- URL: http://arxiv.org/abs/2007.10948v1
- Date: Tue, 21 Jul 2020 17:04:14 GMT
- Title: Heralding Quantum Entanglement between Two Room-Temperature Atomic
Ensembles
- Authors: Hang Li, Jian-Peng Dou, Xiao-Ling Pang, Tian-Huai Yang, Chao-Ni Zhang,
Yuan Chen, Jia-Ming Li, Ian A. Walmsley, Xian-Min Jin
- Abstract summary: We report the realization of quantum entanglement between two atomic ensembles at room temperature.
We strongly verify the existence of a single excitation delocalized in two atomic ensembles.
Remarkably, the heralded quantum entanglement of atomic ensembles can be operated with the feature of delay-choice.
- Score: 7.489722736943663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Establishing quantum entanglement between individual nodes is crucial for
building large-scale quantum networks, enabling secure quantum communication,
distributed quantum computing, enhanced quantum metrology and fundamental tests
of quantum mechanics. However, the shared entanglements have been merely
observed in either extremely low-temperature or well-isolated systems, which
limits the quantum networks for the real-life applications. Here, we report the
realization of heralding quantum entanglement between two atomic ensembles at
room temperature, where each of them contains billions of motional atoms. By
measuring the mapped-out entangled state with quantum interference, concurrence
and correlation, we strongly verify the existence of a single excitation
delocalized in two atomic ensembles. Remarkably, the heralded quantum
entanglement of atomic ensembles can be operated with the feature of
delay-choice, which illustrates the essentiality of the built-in quantum
memory. The demonstrated building block paves the way for constructing quantum
networks and distributing entanglement across multiple remote nodes at ambient
conditions.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Towards real-world quantum networks: a review [3.454055792111304]
Quantum networks play an extremely important role in quantum information science.
One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes.
Dedicated efforts around the world for more than twenty years have resulted in both major theoretical and experimental progress towards entangling quantum nodes.
arXiv Detail & Related papers (2022-01-13T05:53:13Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.