論文の概要: Spatiotemporal Clustering with Neyman-Scott Processes via Connections to
Bayesian Nonparametric Mixture Models
- arxiv url: http://arxiv.org/abs/2201.05044v2
- Date: Fri, 14 Jan 2022 16:40:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-17 12:47:28.214507
- Title: Spatiotemporal Clustering with Neyman-Scott Processes via Connections to
Bayesian Nonparametric Mixture Models
- Title(参考訳): ベイズ非パラメトリック混合モデルへの接続によるNeyman-Scottプロセスによる時空間クラスタリング
- Authors: Yixin Wang, Anthony Degleris, Alex H. Williams, and Scott W. Linderman
- Abstract要約: Neyman-Scott Process (NSP) は、時間または空間におけるポイントのクラスタを生成するポイントプロセスモデルである。
ニューラルスパイク列車におけるシーケンス検出や文書ストリームにおけるイベント検出など,さまざまな応用におけるNSPの可能性を示す。
- 参考スコア(独自算出の注目度): 26.61330991534725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neyman-Scott processes (NSPs) are point process models that generate clusters
of points in time or space. They are natural models for a wide range of
phenomena, ranging from neural spike trains to document streams. The clustering
property is achieved via a doubly stochastic formulation: first, a set of
latent events is drawn from a Poisson process; then, each latent event
generates a set of observed data points according to another Poisson process.
This construction is similar to Bayesian nonparametric mixture models like the
Dirichlet process mixture model (DPMM) in that the number of latent events
(i.e. clusters) is a random variable, but the point process formulation makes
the NSP especially well suited to modeling spatiotemporal data. While many
specialized algorithms have been developed for DPMMs, comparatively fewer works
have focused on inference in NSPs. Here, we present novel connections between
NSPs and DPMMs, with the key link being a third class of Bayesian mixture
models called mixture of finite mixture models (MFMMs). Leveraging this
connection, we adapt the standard collapsed Gibbs sampling algorithm for DPMMs
to enable scalable Bayesian inference on NSP models. We demonstrate the
potential of Neyman-Scott processes on a variety of applications including
sequence detection in neural spike trains and event detection in document
streams.
- Abstract(参考訳): Neyman-Scott Process (NSP) は、時間または空間におけるポイントのクラスタを生成するポイントプロセスモデルである。
それらは、ニューラルネットワークのスパイクトレインからドキュメントストリームまで、幅広い現象の自然なモデルです。
クラスタリング特性は2つの確率的定式化によって達成される: まず、ポアソン過程から潜在事象の集合が引き出され、次に、各潜在事象は別のポアソン過程に従って観測されたデータポイントの集合を生成する。
この構成は、ディリクレ過程混合モデル(DPMM)のようなベイズ的な非パラメトリック混合モデルと似ており、潜在事象の数(すなわちクラスタ)がランダム変数であるのに対して、ポイントプロセスの定式化は、特に時空間データのモデル化に好適である。
多くの特殊アルゴリズムがDPMM向けに開発されたが、NSPにおける推論に焦点を当てた研究は比較的少ない。
ここでは NSP と DPMM の新たな接続について述べる。鍵リンクは有限混合モデル (MFMM) と呼ばれるベイズ混合モデルの第三級である。
この接続を利用して,dpmmの標準崩壊ギブスサンプリングアルゴリズムを適用し,nspモデル上でスケーラブルベイズ推定を行う。
ニューラルスパイク列車におけるシーケンス検出や文書ストリームにおけるイベント検出など,さまざまな応用におけるNeyman-Scottプロセスの可能性を示す。
関連論文リスト
- A Bayesian Mixture Model of Temporal Point Processes with Determinantal Point Process Prior [21.23523473330637]
非同期イベントシーケンスクラスタリングは、教師なしの方法で類似のイベントシーケンスをグループ化することを目的としている。
私たちの研究は、イベントシーケンスクラスタリングのためのフレキシブルな学習フレームワークを提供し、潜在的なクラスタ数の自動識別を可能にします。
これは、ニューラルネットワークベースのモデルを含む幅広いパラメトリック時間点プロセスに適用できる。
論文 参考訳(メタデータ) (2024-11-07T03:21:30Z) - On Feynman--Kac training of partial Bayesian neural networks [1.6474447977095783]
部分ベイズニューラルネットワーク(pBNN)は、完全なベイズニューラルネットワークと競合することが示されている。
本稿では,Feynman-Kacモデルのシミュレーションとして,pBNNのトレーニングを定式化した効率的なサンプリングベーストレーニング戦略を提案する。
提案手法は, 予測性能において, 技術状況よりも優れることを示す。
論文 参考訳(メタデータ) (2023-10-30T15:03:15Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
本稿では,ベイジアンネットワークの構造上の結合後部を近似する手法を提案する。
サンプリングポリシが2フェーズプロセスに従う単一のGFlowNetを使用します。
パラメータは後部分布に含まれるため、これは局所確率モデルに対してより柔軟である。
論文 参考訳(メタデータ) (2023-05-30T19:16:44Z) - Generative modeling for time series via Schr{\"o}dinger bridge [0.0]
本稿では,SB (Schr'dinger Bridge) に基づく時系列生成モデルを提案する。
これは、経路空間上の基準確率測度と、時系列の合同データ分布と整合した目標測度との間の最適輸送によるエントロピックから構成される。
論文 参考訳(メタデータ) (2023-04-11T09:45:06Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
確率的3Dポイントクラウド登録法は、ノイズ、アウトレーヤ、密度変動を克服する競合性能を示した。
本稿では,一致したガウス混合モデル(GMM)パラメータから最適変換を演算する,重複誘導確率登録手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:02:33Z) - A new perspective on probabilistic image modeling [92.89846887298852]
本稿では,密度推定,サンプリング,トラクタブル推論が可能な画像モデリングのための新しい確率論的手法を提案する。
DCGMMは、CNNのように、ランダムな初期条件からSGDによってエンドツーエンドに訓練することができる。
本研究は,近年のPCおよびSPNモデルと,推論,分類,サンプリングの観点から比較した。
論文 参考訳(メタデータ) (2022-03-21T14:53:57Z) - Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal
Stochastic Linear Mixing Model [2.7909426811685893]
現代の時系列データセットの多くは、長期間にわたってサンプリングされた大量の出力応答変数を含んでいる。
本稿では,多種多様な大規模時系列データセット解析のための新しいマルコフ連鎖モンテカルロフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-25T01:12:54Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z) - Scalable Hybrid HMM with Gaussian Process Emission for Sequential
Time-series Data Clustering [13.845932997326571]
隠れマルコフモデル(HMM)とガウス過程(GP)のエミッションを組み合わせることで、隠れた状態を効率的に推定することができる。
本稿では,HMM-GPSMのためのスケーラブルな学習法を提案する。
論文 参考訳(メタデータ) (2020-01-07T07:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。