STEdge: Self-training Edge Detection with Multi-layer Teaching and
Regularization
- URL: http://arxiv.org/abs/2201.05121v2
- Date: Wed, 5 Jul 2023 17:52:07 GMT
- Title: STEdge: Self-training Edge Detection with Multi-layer Teaching and
Regularization
- Authors: Yunfan Ye, Renjiao Yi, Zhiping Cai, Kai Xu
- Abstract summary: We study the problem of self-training edge detection, leveraging the untapped wealth of large-scale unlabeled image datasets.
We design a self-supervised framework with multi-layer regularization and self-teaching.
Our method attains 4.8% improvement for ODS and 5.8% for OIS when tested on the unseen BIPED dataset.
- Score: 15.579360385857129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based edge detection has hereunto been strongly supervised with
pixel-wise annotations which are tedious to obtain manually. We study the
problem of self-training edge detection, leveraging the untapped wealth of
large-scale unlabeled image datasets. We design a self-supervised framework
with multi-layer regularization and self-teaching. In particular, we impose a
consistency regularization which enforces the outputs from each of the multiple
layers to be consistent for the input image and its perturbed counterpart. We
adopt L0-smoothing as the 'perturbation' to encourage edge prediction lying on
salient boundaries following the cluster assumption in self-supervised
learning. Meanwhile, the network is trained with multi-layer supervision by
pseudo labels which are initialized with Canny edges and then iteratively
refined by the network as the training proceeds. The regularization and
self-teaching together attain a good balance of precision and recall, leading
to a significant performance boost over supervised methods, with lightweight
refinement on the target dataset. Furthermore, our method demonstrates strong
cross-dataset generality. For example, it attains 4.8% improvement for ODS and
5.8% for OIS when tested on the unseen BIPED dataset, compared to the
state-of-the-art methods.
Related papers
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning
for Salient Object Detection [40.97103355628434]
It is unclear whether a saliency model trained with weakly-supervised data can achieve the equivalent performance of its fully-supervised version.
We propose a novel yet effective adversarial trajectory-ensemble active learning (ATAL)
Experimental results show that our ATAL can find such a point-labeled dataset, where a saliency model trained on it obtained $97%$ -- $99%$ performance of its fully-supervised version with only ten annotated points per image.
arXiv Detail & Related papers (2022-12-13T11:18:08Z) - Efficient Self-Supervision using Patch-based Contrastive Learning for
Histopathology Image Segmentation [0.456877715768796]
We propose a framework for self-supervised image segmentation using contrastive learning on image patches.
A fully convolutional neural network (FCNN) is trained in a self-supervised manner to discern features in the input images.
The proposed model only consists of a simple FCNN with 10.8k parameters and requires about 5 minutes to converge on the high resolution microscopy datasets.
arXiv Detail & Related papers (2022-08-23T07:24:47Z) - Contrastive Regularization for Semi-Supervised Learning [46.020125061295886]
We propose contrastive regularization to improve both efficiency and accuracy of the consistency regularization by well-clustered features of unlabeled data.
Our method also shows robust performance on open-set semi-supervised learning where unlabeled data includes out-of-distribution samples.
arXiv Detail & Related papers (2022-01-17T07:20:11Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
We propose a semi-weakly supervised contrastive learning framework for representation learning using semi-weakly annotated images.
We empirically validate the transfer learning performance of SWCL on seven public retinal fundus datasets.
arXiv Detail & Related papers (2021-08-04T15:50:09Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Statistical and Algorithmic Insights for Semi-supervised Learning with
Self-training [30.866440916522826]
Self-training is a classical approach in semi-supervised learning.
We show that self-training iterations gracefully improve the model accuracy even if they do get stuck in sub-optimal fixed points.
We then establish a connection between self-training based semi-supervision and the more general problem of learning with heterogenous data.
arXiv Detail & Related papers (2020-06-19T08:09:07Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.