Formula graph self-attention network for representation-domain
independent materials discovery
- URL: http://arxiv.org/abs/2201.05649v1
- Date: Fri, 14 Jan 2022 19:49:45 GMT
- Title: Formula graph self-attention network for representation-domain
independent materials discovery
- Authors: Achintha Ihalage and Yang Hao
- Abstract summary: We introduce a new concept of formula graph which unifies both stoichiometry-only and structure-based material descriptors.
We develop a self-attention integrated GNN that assimilates a formula graph and show that the proposed architecture produces material embeddings transferable between the two domains.
Our model substantially outperforms previous structure-based GNNs as well as structure-agnostic counterparts.
- Score: 3.67735033631952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of machine learning (ML) in materials property prediction depends
heavily on how the materials are represented for learning. Two dominant
families of material descriptors exist, one that encodes crystal structure in
the representation and the other that only uses stoichiometric information with
the hope of discovering new materials. Graph neural networks (GNNs) in
particular have excelled in predicting material properties within chemical
accuracy. However, current GNNs are limited to only one of the above two
avenues owing to the little overlap between respective material
representations. Here, we introduce a new concept of formula graph which
unifies both stoichiometry-only and structure-based material descriptors. We
further develop a self-attention integrated GNN that assimilates a formula
graph and show that the proposed architecture produces material embeddings
transferable between the two domains. Our model substantially outperforms
previous structure-based GNNs as well as structure-agnostic counterparts while
exhibiting better sample efficiency and faster convergence. Finally, the model
is applied in a challenging exemplar to predict the complex dielectric function
of materials and nominate new substances that potentially exhibit
epsilon-near-zero phenomena.
Related papers
- Material Property Prediction with Element Attribute Knowledge Graphs and Multimodal Representation Learning [8.523289773617503]
We build an element property knowledge graph and utilize an embedding model to encode the element attributes within the knowledge graph.
A multimodal fusion framework, ESNet, integrates element property features with crystal structure features to generate joint multimodal representations.
This provides a more comprehensive perspective for predicting the performance of crystalline materials.
arXiv Detail & Related papers (2024-11-13T08:07:21Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
Graph neural networks (GNNs) have drawn more and more attention from material scientists.
We develop a multi-task (MT) architecture based on DimeNet++ and mixture density networks to improve the performance of such task.
arXiv Detail & Related papers (2022-09-15T13:52:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - EBSD Grain Knowledge Graph Representation Learning for Material
Structure-Property Prediction [2.049702429898688]
The material genetic engineering program aims to establish the relationship between material composition/process, organization, and performance.
This paper proposes a novel data-knowledge-driven organization representation and performance prediction method.
The experimental results show that our method is superior to traditional machine learning and machine vision methods.
arXiv Detail & Related papers (2021-09-29T07:48:20Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
We propose the Orbital Graph Convolutional Neural Network (OGCNN), a crystal graph convolutional neural network framework.
OGCNN includes atomic orbital interaction features that learn material properties in a robust way.
We examined the performance of this model on a broad range of crystalline material data to predict different properties.
arXiv Detail & Related papers (2020-08-14T15:22:22Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z) - Global Attention based Graph Convolutional Neural Networks for Improved
Materials Property Prediction [8.371766047183739]
We develop a novel model, GATGNN, for predicting inorganic material properties based on graph neural networks.
We show that our method is able to both outperform the previous models' predictions and provide insight into the crystallization of the material.
arXiv Detail & Related papers (2020-03-11T07:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.