論文の概要: Cooperative Multi-Agent Deep Reinforcement Learning for Reliable
Surveillance via Autonomous Multi-UAV Control
- arxiv url: http://arxiv.org/abs/2201.05843v1
- Date: Sat, 15 Jan 2022 12:40:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 15:07:11.760274
- Title: Cooperative Multi-Agent Deep Reinforcement Learning for Reliable
Surveillance via Autonomous Multi-UAV Control
- Title(参考訳): 自律型マルチUAV制御による信頼性サーベイランスのための協調型マルチエージェント深層強化学習
- Authors: Won Joon Yun, Soohyun Park, Joongheon Kim, MyungJae Shin, Soyi Jung,
David A. Mohaisen, Jae-Hyun Kim
- Abstract要約: 無人航空機(UAV)を用いたCCTVによる監視は、スマートシティ環境におけるセキュリティの鍵となる技術であると考えられている。
本稿では, CCTVカメラを搭載したUAVが都市部を飛行し, フレキシブルで信頼性の高い監視サービスを行う事例を提示する。
提案アルゴリズムは,監視カバレッジ,ユーザサポート機能,計算コストなどの観点から,最先端のアルゴリズムよりも優れている。
- 参考スコア(独自算出の注目度): 16.931263410773592
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a
key technology for security in smart city environments. This paper creates a
case where the UAVs with CCTV-cameras fly over the city area for flexible and
reliable surveillance services. UAVs should be deployed to cover a large area
while minimize overlapping and shadow areas for a reliable surveillance system.
However, the operation of UAVs is subject to high uncertainty, necessitating
autonomous recovery systems. This work develops a multi-agent deep
reinforcement learning-based management scheme for reliable industry
surveillance in smart city applications. The core idea this paper employs is
autonomously replenishing the UAV's deficient network requirements with
communications. Via intensive simulations, our proposed algorithm outperforms
the state-of-the-art algorithms in terms of surveillance coverage, user support
capability, and computational costs.
- Abstract(参考訳): 無人航空機(UAV)を用いたCCTVによる監視は、スマートシティ環境におけるセキュリティの鍵となる技術であると考えられている。
本稿では, CCTVカメラを搭載したUAVが都市部を飛行し, フレキシブルで信頼性の高い監視サービスを行う事例を提示する。
UAVは、信頼性の高い監視システムのために、重複と影の面積を最小限に抑えながら、広範囲をカバーするために配備されるべきである。
しかし、UAVの運用には高い不確実性があり、自律回収システムが必要である。
本研究は、スマートシティアプリケーションにおける信頼性の高い産業監視のためのマルチエージェント深層学習に基づく管理手法を開発する。
この論文が採用する中核的な考え方は、UAVの不十分なネットワーク要件を自律的に通信で補うことである。
集中シミュレーションにより,提案アルゴリズムは,監視範囲,ユーザサポート機能,計算コストの面で最先端アルゴリズムを上回っている。
関連論文リスト
- Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
UAVスワムの管理を最適化するための協調認知力学システム(CCDS)を提案する。
CCDSは階層的かつ協調的な制御構造であり、リアルタイムのデータ処理と意思決定を可能にする。
さらに、CCDSは、UAVスワムのタスクを効率的に割り当てるための生体模倣機構と統合することができる。
論文 参考訳(メタデータ) (2024-05-18T12:45:00Z) - Enhancing Privacy and Security of Autonomous UAV Navigation [0.8512184778338805]
国境警備や災害対応といった重要なシナリオでは、自律型無人機の安全な航行が最重要である。
本稿では,RL(Reinforcement Learning)とFHE(Fully Homomorphic Encryption)を組み合わせて,自律型UAVナビゲーションを実現する革新的な手法を提案する。
提案手法により,自律型UAVナビゲーションにおけるセキュリティとプライバシが保証され,性能が損なわれない。
論文 参考訳(メタデータ) (2024-04-26T07:54:04Z) - Blockchain-Based Security Architecture for Unmanned Aerial Vehicles in B5G/6G Services and Beyond: A Comprehensive Approach [4.552065156611815]
無人航空機(UAV)は、災害を効果的に管理し、緊急事態に対応するために必要なツールへと進化してきた。
先進的なUAVベースのB5G/6Gアーキテクチャに関連する研究と開発において、異なるセキュリティ課題を特定し、検討することが重要である。
論文 参考訳(メタデータ) (2023-12-12T01:55:04Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Cooperative Multi-Agent Deep Reinforcement Learning for Reliable and
Energy-Efficient Mobile Access via Multi-UAV Control [13.692977942834627]
本稿では,複数無人航空機(UAV)のためのMADRLに基づく位置決めアルゴリズムについて述べる。
提案アルゴリズムの主な目的は、セルラー車間通信(C-V2X)のための信頼性の高い移動アクセスネットワークを確立することである。
論文 参考訳(メタデータ) (2022-10-03T14:01:52Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - Spatio-Temporal Split Learning for Autonomous Aerial Surveillance using
Urban Air Mobility (UAM) Networks [16.782309873372057]
本稿では,街路火災の検知を目的とした監視型UAVを利用する。
このシナリオに時空間分割学習を適用して、プライバシを保護し、世界規模で火災分類モデルを訓練する。
本稿では,このUAV環境での分断学習に必要なクライアント数とデータ比率と,必要なネットワークインフラについて検討する。
論文 参考訳(メタデータ) (2021-11-15T01:39:31Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。