Automatic Segmentation of Head and Neck Tumor: How Powerful Transformers
Are?
- URL: http://arxiv.org/abs/2201.06251v1
- Date: Mon, 17 Jan 2022 07:31:52 GMT
- Title: Automatic Segmentation of Head and Neck Tumor: How Powerful Transformers
Are?
- Authors: Ikboljon Sobirov, Otabek Nazarov, Hussain Alasmawi, and Mohammad Yaqub
- Abstract summary: We develop a vision transformers-based method to automatically delineate H&N tumor.
We compare its results to leading convolutional neural network (CNN)-based models.
We show that the selected transformer-based model can achieve results on a par with CNN-based ones.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cancer is one of the leading causes of death worldwide, and head and neck
(H&N) cancer is amongst the most prevalent types. Positron emission tomography
and computed tomography are used to detect and segment the tumor region.
Clinically, tumor segmentation is extensively time-consuming and prone to
error. Machine learning, and deep learning in particular, can assist to
automate this process, yielding results as accurate as the results of a
clinician. In this research study, we develop a vision transformers-based
method to automatically delineate H&N tumor, and compare its results to leading
convolutional neural network (CNN)-based models. We use multi-modal data of CT
and PET scans to do this task. We show that the selected transformer-based
model can achieve results on a par with CNN-based ones. With cross validation,
the model achieves a mean dice similarity coefficient of 0.736, mean precision
of 0.766 and mean recall of 0.766. This is only 0.021 less than the 2020
competition winning model in terms of the DSC score. This indicates that the
exploration of transformer-based models is a promising research area.
Related papers
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
This study proposes a hybrid model that combines the advantages of Transformers and Convolutional Neural Networks (CNNs) to enhance classification performance.
For the GastroVision dataset, our proposed model demonstrates excellent performance with Precision, Recall, F1 score, Accuracy, and Matthews Correlation Coefficient (MCC) of 0.8320, 0.8386, 0.8324, 0.8386, and 0.8191, respectively.
arXiv Detail & Related papers (2024-08-20T11:05:32Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
This work introduces an efficient brain tumor summation model by exploiting the advancement in MRI and graph neural networks (GNNs)
The model represents the volumetric MRI as a region adjacency graph (RAG) and learns to identify the type of tumors through a graph attention network (GAT)
arXiv Detail & Related papers (2023-02-11T04:30:40Z) - A Novel Mask R-CNN Model to Segment Heterogeneous Brain Tumors through
Image Subtraction [0.0]
We propose using a method performed by radiologists called image segmentation and applying it to machine learning models to prove a better segmentation.
Using Mask R-CNN, its ResNet backbone being pre-trained on the RSNA pneumonia detection challenge dataset, we can train a model on the Brats 2020 Brain Tumor dataset.
We can see how well the method of image subtraction works by comparing it to models without image subtraction through DICE coefficient (F1 score), recall, and precision on the untouched test set.
arXiv Detail & Related papers (2022-04-04T01:45:11Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Comparison of different CNNs for breast tumor classification from
ultrasound images [12.98780709853981]
classifying benign and malignant tumors from ultrasound (US) imaging is a crucial but challenging task.
We compared different Convolutional Neural Networks (CNNs) and transfer learning methods for the task of automated breast tumor classification.
The best performance was obtained by fine tuning VGG-16, with an accuracy of 0.919 and an AUC of 0.934.
arXiv Detail & Related papers (2020-12-28T22:54:08Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.