A Novel Mask R-CNN Model to Segment Heterogeneous Brain Tumors through
Image Subtraction
- URL: http://arxiv.org/abs/2204.01201v1
- Date: Mon, 4 Apr 2022 01:45:11 GMT
- Title: A Novel Mask R-CNN Model to Segment Heterogeneous Brain Tumors through
Image Subtraction
- Authors: Sanskriti Singh
- Abstract summary: We propose using a method performed by radiologists called image segmentation and applying it to machine learning models to prove a better segmentation.
Using Mask R-CNN, its ResNet backbone being pre-trained on the RSNA pneumonia detection challenge dataset, we can train a model on the Brats 2020 Brain Tumor dataset.
We can see how well the method of image subtraction works by comparing it to models without image subtraction through DICE coefficient (F1 score), recall, and precision on the untouched test set.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The segmentation of diseases is a popular topic explored by researchers in
the field of machine learning. Brain tumors are extremely dangerous and require
the utmost precision to segment for a successful surgery. Patients with tumors
usually take 4 MRI scans, T1, T1gd, T2, and FLAIR, which are then sent to
radiologists to segment and analyze for possible future surgery. To create a
second segmentation, it would be beneficial to both radiologists and patients
in being more confident in their conclusions. We propose using a method
performed by radiologists called image segmentation and applying it to machine
learning models to prove a better segmentation. Using Mask R-CNN, its ResNet
backbone being pre-trained on the RSNA pneumonia detection challenge dataset,
we can train a model on the Brats2020 Brain Tumor dataset. Center for
Biomedical Image Computing & Analytics provides MRI data on patients with and
without brain tumors and the corresponding segmentations. We can see how well
the method of image subtraction works by comparing it to models without image
subtraction through DICE coefficient (F1 score), recall, and precision on the
untouched test set. Our model performed with a DICE coefficient of 0.75 in
comparison to 0.69 without image subtraction. To further emphasize the
usefulness of image subtraction, we compare our final model to current
state-of-the-art models to segment tumors from MRI scans.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Intraoperative Glioma Segmentation with YOLO + SAM for Improved Accuracy in Tumor Resection [1.9461727843485295]
Gliomas present significant surgical challenges due to similarity to healthy tissue.
MRI images are often ineffective during surgery due to factors such as brain shift.
This paper presents a deep learning pipeline combining You Only Look Once Version 8 (Yv8) and Segment Anything Model Vision Transformer-base.
arXiv Detail & Related papers (2024-08-27T07:58:08Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - MLC at HECKTOR 2022: The Effect and Importance of Training Data when
Analyzing Cases of Head and Neck Tumors using Machine Learning [0.9166327220922845]
This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022.
Analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis.
arXiv Detail & Related papers (2022-11-30T09:04:27Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
This work proposes the use of a superpixel generation model and a superpixel clustering model to enable weakly supervised brain tumor segmentations.
We used 2D slices of magnetic resonance brain scans from the Multimodal Brain Tumor Challenge 2020 dataset and labels indicating the presence of tumors to train the pipeline.
Our method achieved a mean Dice coefficient of 0.691 and a mean 95% Hausdorff distance of 18.1, outperforming existing superpixel-based weakly supervised segmentation methods.
arXiv Detail & Related papers (2022-09-20T18:08:34Z) - A Novel Framework for Brain Tumor Detection Based on Convolutional
Variational Generative Models [6.726255259929498]
This paper introduces a novel framework for brain tumor detection and classification.
The proposed framework acquires an overall detection accuracy of 96.88%.
It highlights the promise of the proposed framework as an accurate low-overhead brain tumor detection system.
arXiv Detail & Related papers (2022-02-20T16:14:01Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.