論文の概要: STURE: Spatial-Temporal Mutual Representation Learning for Robust Data
Association in Online Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2201.06824v1
- Date: Tue, 18 Jan 2022 08:52:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 16:13:18.413758
- Title: STURE: Spatial-Temporal Mutual Representation Learning for Robust Data
Association in Online Multi-Object Tracking
- Title(参考訳): sture: オンラインマルチオブジェクト追跡におけるロバストデータアソシエーションのための空間-時間間相互表現学習
- Authors: HaidongWang, Zhiyong Li, Yaping Li, Ke Nai, Ming Wen
- Abstract要約: 提案手法は、より区別された検出とシーケンス表現を抽出することができる。
パブリックMOTチャレンジベンチマークに適用され、様々な最先端のオンラインMOTトラッカーとよく比較される。
- 参考スコア(独自算出の注目度): 7.562844934117318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online multi-object tracking (MOT) is a longstanding task for computer vision
and intelligent vehicle platform. At present, the main paradigm is
tracking-by-detection, and the main difficulty of this paradigm is how to
associate the current candidate detection with the historical tracklets.
However, in the MOT scenarios, each historical tracklet is composed of an
object sequence, while each candidate detection is just a flat image, which
lacks the temporal features of the object sequence. The feature difference
between current candidate detection and historical tracklets makes the object
association much harder. Therefore, we propose a Spatial-Temporal Mutual
{Representation} Learning (STURE) approach which learns spatial-temporal
representations between current candidate detection and historical sequence in
a mutual representation space. For the historical trackelets, the detection
learning network is forced to match the representations of sequence learning
network in a mutual representation space. The proposed approach is capable of
extracting more distinguishing detection and sequence representations by using
various designed losses in object association. As a result, spatial-temporal
feature is learned mutually to reinforce the current detection features, and
the feature difference can be relieved. To prove the robustness of the STURE,
it is applied to the public MOT challenge benchmarks and performs well compared
with various state-of-the-art online MOT trackers based on identity-preserving
metrics.
- Abstract(参考訳): オンラインマルチオブジェクトトラッキング(MOT)は、コンピュータビジョンとインテリジェントな車両プラットフォームのための長年のタスクである。
現在、主要なパラダイムはトラッキング・バイ・検出であり、このパラダイムの主な難しさは、現在の候補検出と過去のトラックレットを関連付ける方法である。
しかし、motのシナリオでは、各履歴トラックレットはオブジェクトシーケンスで構成され、各候補検出は単なるフラットイメージであり、オブジェクトシーケンスの時間的特徴を欠いている。
現在の候補検出と履歴トラックレットの特徴の違いは、オブジェクトの関連性をはるかに難しくする。
そこで,本稿では,現在候補検出と歴史的シーケンス間の空間時間表現を相互表現空間で学習する空間-時間間相互表現学習(sture)手法を提案する。
歴史的トラケレットの場合、検出学習ネットワークは、相互表現空間におけるシーケンス学習ネットワークの表現と一致せざるを得ない。
提案手法は,オブジェクト連想における各種設計損失を用いて,検出とシーケンス表現をより識別する手法である。
その結果、現在の検出特徴を強化するために時空間特徴を相互に学習し、特徴差を緩和することができる。
STUREのロバスト性を証明するために、パブリックMOTチャレンジベンチマークに適用され、ID保存メトリクスに基づく様々な最先端のオンラインMOTトラッカーと比較してよく機能する。
関連論文リスト
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
歴史的埋め込み機能を用いて,ReIDの表現と検出機能を逐次的にモデル化する。
我々のフレームワークはMOTAとIDF1メトリクスで新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2024-09-17T14:34:18Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Lost and Found: Overcoming Detector Failures in Online Multi-Object Tracking [15.533652456081374]
マルチオブジェクト追跡(MOT)は、時間とともに複数のオブジェクトのアイデンティティと位置を正確に推定する。
現代の検出器は、あるフレーム内のいくつかのオブジェクトを見逃すことがあるため、トラッカーは早めに追跡をやめる。
オンラインTbDシステムと互換性のある汎用フレームワークであるBUSCAを提案する。
論文 参考訳(メタデータ) (2024-07-14T10:45:12Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - Tracking Objects and Activities with Attention for Temporal Sentence
Grounding [51.416914256782505]
時間文 (TSG) は、意味的に自然言語のクエリと一致した時間セグメントを、トリミングされていないセグメントでローカライズすることを目的としている。
本稿では,(A)マルチモーダル・検索空間を生成するクロスモーダル・ターゲット・ジェネレータと(B)マルチモーダル・ターゲットの動作を追跡し,クエリ関連セグメントを予測するテンポラル・センセント・トラッカーとを含む,新しいテンポラル・センセント・トラッカー・ネットワーク(TSTNet)を提案する。
論文 参考訳(メタデータ) (2023-02-21T16:42:52Z) - Spatio-Temporal Point Process for Multiple Object Tracking [30.041104276095624]
多重オブジェクト追跡(MOT)は、連続するフレーム間の検出対象の関係をモデル化し、それらを異なる軌道にマージすることに焦点を当てている。
本稿では,物体を軌道に関連付ける前に,ノイズを効果的に予測し,マスクアウトし,検出結果を混乱させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-05T18:14:08Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - Multi-Object Tracking and Segmentation with a Space-Time Memory Network [12.043574473965318]
トラックレットを関連づける新しいメモリベース機構に基づく多目的追跡とセグメンテーションの手法を提案する。
提案するトラッカーであるMeNToSは、特に長期データアソシエーションの問題に対処する。
論文 参考訳(メタデータ) (2021-10-21T17:13:17Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - Learning to associate detections for real-time multiple object tracking [0.0]
本研究では, ニューラルネットワークを用いて, 検出に使用可能な類似性関数を学習する。
提案したトラッカーは最先端の手法で得られた結果と一致し、ベースラインとして使用される最近の類似手法よりも58%高速に動作している。
論文 参考訳(メタデータ) (2020-07-12T17:08:41Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。