論文の概要: Hardware-Efficient Deconvolution-Based GAN for Edge Computing
- arxiv url: http://arxiv.org/abs/2201.06878v1
- Date: Tue, 18 Jan 2022 11:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 18:30:15.571037
- Title: Hardware-Efficient Deconvolution-Based GAN for Edge Computing
- Title(参考訳): エッジコンピューティングのためのハードウェア効率の良いデコンボリューションベースGAN
- Authors: Azzam Alhussain and Mingjie Lin
- Abstract要約: Generative Adversarial Networks (GAN) は、学習したデータ分布に基づいて新しいデータサンプルを生成する最先端のアルゴリズムである。
我々は、スケーラブルなストリーミングデータフローアーキテクチャを用いてFPGA上に実装された量子化デコンボリューションGAN(QDCGAN)のトレーニングのためのHW/SW共同設計手法を提案する。
リソース制約のあるプラットフォーム上での低消費電力推論のために,様々な精度,データセット,ネットワークスケーラビリティを解析した。
- 参考スコア(独自算出の注目度): 1.5229257192293197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GAN) are cutting-edge algorithms for
generating new data samples based on the learned data distribution. However,
its performance comes at a significant cost in terms of computation and memory
requirements. In this paper, we proposed an HW/SW co-design approach for
training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a
scalable streaming dataflow architecture capable of achieving higher throughput
versus resource utilization trade-off. The developed accelerator is based on an
efficient deconvolution engine that offers high parallelism with respect to
scaling factors for GAN-based edge computing. Furthermore, various precisions,
datasets, and network scalability were analyzed for low-power inference on
resource-constrained platforms. Lastly, an end-to-end open-source framework is
provided for training, implementation, state-space exploration, and scaling the
inference using Vivado high-level synthesis for Xilinx SoC-FPGAs, and a
comparison testbed with Jetson Nano.
- Abstract(参考訳): Generative Adversarial Networks (GAN)は、学習したデータ分布に基づいて新しいデータサンプルを生成する最先端のアルゴリズムである。
しかし、その性能は計算とメモリ要求の面で大きなコストを伴っている。
本稿では,FPGA上に実装された量子化デコンボリューションGAN(QDCGAN)のトレーニングのためのHW/SW共同設計手法を提案する。
開発したアクセラレータは、ganベースのエッジコンピューティングのスケーリング係数に関して高い並列性を提供する効率的なデコンボリューションエンジンに基づいている。
さらに,リソース制約のあるプラットフォーム上での低消費電力推論のために,様々な精度,データセット,ネットワークスケーラビリティを解析した。
最後に、Xilinx SoC-FPGAのVivado高レベル合成による推論のトレーニング、実装、状態空間探索、スケーリング、およびJetson Nanoによる比較テストのためのエンドツーエンドのオープンソースフレームワークを提供する。
関連論文リスト
- Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
本研究では、フィールドプログラマブルゲートアレイ(FPGA)を用いたECG信号解析のための高度なニューラルネットワークアーキテクチャを提案する。
我々は、トレーニングと検証にMIT-BIH Arrhythmia Databaseを使用し、堅牢性を改善するためにガウスノイズを導入した。
この研究は最終的に、様々なアプリケーションのためのFPGA上でのニューラルネットワーク性能を最適化するためのガイドを提供する。
論文 参考訳(メタデータ) (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - N3H-Core: Neuron-designed Neural Network Accelerator via FPGA-based
Heterogeneous Computing Cores [26.38812379700231]
FPGAを用いたニューラルネットワーク高速化のための異種計算システムを開発した。
提案するアクセラレータは、DSPとLUTをベースとしたGEMM(GEneral Matrix-Multiplication)コンピューティングコアで構成されている。
我々の設計では、最新のMix&Match設計よりも遅延が1.12-1.32x削減され、推論精度が向上した。
論文 参考訳(メタデータ) (2021-12-15T15:12:00Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesisは、アプリケーション固有の高速プロトタイピングのためのソリューションである。
本稿では,加速性能とハードウェアコストを共同で予測するグラフニューラルネットワークHLSを提案する。
提案手法は,一般的なシミュレータと同等の精度で予測できることを示す。
論文 参考訳(メタデータ) (2021-11-29T18:17:45Z) - AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization [159.75564904944707]
垂直連合学習(VFL)のための非同期準ニュートン(AsySQN)フレームワークを提案する。
提案アルゴリズムは、逆ヘッセン行列を明示的に計算することなく、近似して降下ステップをスケールする。
本稿では,非同期計算を採用することにより,計算資源の有効利用が期待できることを示す。
論文 参考訳(メタデータ) (2021-09-26T07:56:10Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
本稿では,ハードウェアにArticial Neural Networks(ANN)を実装するための,新しい電力・面積効率アーキテクチャを提案する。
LENET-5として完全に並列なCNNを1つのFPGAに埋め込んでテストするのが初めてである。
論文 参考訳(メタデータ) (2020-06-22T17:19:09Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
グラフ畳み込みネットワーク(GCN)は、グラフ上での表現学習のための最先端のディープラーニングモデルとして登場した。
実質的かつ不規則なデータ通信のため、GCNの訓練を加速することは困難である。
我々はCPU-FPGAヘテロジニアスシステム上でGCNをトレーニングするための新しいアクセラレータを設計する。
論文 参考訳(メタデータ) (2019-12-31T21:19:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。