論文の概要: WATCH: Wasserstein Change Point Detection for High-Dimensional Time
Series Data
- arxiv url: http://arxiv.org/abs/2201.07125v1
- Date: Tue, 18 Jan 2022 16:55:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 15:57:09.717613
- Title: WATCH: Wasserstein Change Point Detection for High-Dimensional Time
Series Data
- Title(参考訳): 高次元時系列データに対するwasserstein change point detection
- Authors: Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Michael Baron,
Nathalie Japkowicz
- Abstract要約: 変化点検出方法は、教師なしの方法で変化を検出する能力を持つ。
本稿では,ワッサーシュタイン距離に基づく変化点検出手法であるWATCHを提案する。
広範な評価により、WATCHは変化点を正確に識別し、最先端の手法より優れていることが示されている。
- 参考スコア(独自算出の注目度): 4.228718402877829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting relevant changes in dynamic time series data in a timely manner is
crucially important for many data analysis tasks in real-world settings. Change
point detection methods have the ability to discover changes in an unsupervised
fashion, which represents a desirable property in the analysis of unbounded and
unlabeled data streams. However, one limitation of most of the existing
approaches is represented by their limited ability to handle multivariate and
high-dimensional data, which is frequently observed in modern applications such
as traffic flow prediction, human activity recognition, and smart grids
monitoring. In this paper, we attempt to fill this gap by proposing WATCH, a
novel Wasserstein distance-based change point detection approach that models an
initial distribution and monitors its behavior while processing new data
points, providing accurate and robust detection of change points in dynamic
high-dimensional data. An extensive experimental evaluation involving a large
number of benchmark datasets shows that WATCH is capable of accurately
identifying change points and outperforming state-of-the-art methods.
- Abstract(参考訳): 動的時系列データの時間的変化を検出することは、実世界の多くのデータ分析タスクにおいて極めて重要である。
変化点検出方法は教師なしの方法で変化を検出する能力を持ち、無境界データストリームやラベルなしデータストリームの分析において望ましい特性を示す。
しかしながら、既存のアプローチの大部分の制限は、トラフィックフロー予測、ヒューマンアクティビティ認識、スマートグリッド監視といった現代のアプリケーションでよく見られる多変量および高次元のデータを扱う能力が限られていることを表している。
本稿では,ワッサースタイン距離に基づく新しい変化点検出手法であるWATCHを提案する。この手法は,新しいデータポイントを処理しながら初期分布をモデル化し,その挙動を監視し,動的高次元データにおける変化点の高精度かつ堅牢な検出を可能にする。
多数のベンチマークデータセットを含む広範な実験的評価は、WATCHが変更点を正確に識別し、最先端の手法より優れた性能を発揮することを示している。
関連論文リスト
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Online Change Points Detection for Linear Dynamical Systems with Finite
Sample Guarantees [1.6026317505839445]
本研究では,未知の力学を持つ線形力学系に対するオンライン変化点検出問題について検討する。
我々は,誤報を発生させる確率に基づいて,予め指定された上限を達成できるデータ依存しきい値を開発する。
論文 参考訳(メタデータ) (2023-11-30T18:08:16Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - High dimensional change-point detection: a complete graph approach [0.0]
低次元から高次元のオンラインデータから平均と分散の変化を検出するための完全なグラフベース変化点検出アルゴリズムを提案する。
グラフ構造に着想を得て,高次元データをメトリクスにマッピングするグラフスパンニング比を導入する。
提案手法は,小型かつ複数個のスキャニングウィンドウで高い検出能力を有し,オンライン環境における変化点のタイムリーな検出を可能にする。
論文 参考訳(メタデータ) (2022-03-16T15:59:20Z) - PERCEPT: a new online change-point detection method using topological
data analysis [10.49648038337544]
トポロジカルデータ分析(TDA)は、データセットから埋め込みトポロジカル構造を抽出する一連のデータ解析ツールを提供する。
そこで我々は,PERCEPT (Persistence diagram-based ChangE-PoinT Detection) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T18:05:52Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
我々は、この課題を克服する2段階の教師なしアプローチを、強力なピクセルベースの特徴を初めて学習することによって定式化する。
本手法は,いくつかの難解なランドマーク検出データセットにおいて最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-04-07T05:42:11Z) - Online Structural Change-point Detection of High-dimensional Streaming
Data via Dynamic Sparse Subspace Learning [9.050841801109332]
本研究では,高次元ストリーミングデータのオンライン構造変化点検出のための動的スパース部分空間学習手法を提案する。
新たな構造変化点モデルを提案し, 推定器の特性について検討した。
オンライン最適化と変更点検出のために,効率的なPruned Exact Linear Timeベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-24T14:16:18Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
本研究は,センサ容量の制限により,各センシング時点におけるデータストリームのサブセットのみを観測できる,疎度な変化を伴う高次元データストリームのオンライン変化検出について考察する。
一方、検出方式は、部分的に観測可能なデータを扱うことができ、一方、スパース変化に対する効率的な検出能力を有するべきである。
本稿では,CDSSDと呼ばれる新しい検出手法を提案する。特にスムーズな分解によるスムーズな変化を伴う高次元データの構造について述べる。
論文 参考訳(メタデータ) (2020-09-22T16:03:04Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
変化点検出(CPD)は、時系列データにおける急激な特性変化を見つけることを目的としている。
近年のCDD法は、深層学習技術を用いる可能性を示したが、信号の自己相関統計学におけるより微妙な変化を識別する能力に欠けることが多い。
我々は、新しい損失関数を持つオートエンコーダに基づく手法を用い、使用済みオートエンコーダは、CDDに適した部分的な時間不変表現を学習する。
論文 参考訳(メタデータ) (2020-08-21T15:03:21Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。