論文の概要: Dynamical Dorfman Testing with Quarantine
- arxiv url: http://arxiv.org/abs/2201.07204v1
- Date: Tue, 18 Jan 2022 18:58:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 20:30:32.681405
- Title: Dynamical Dorfman Testing with Quarantine
- Title(参考訳): 検疫による動的ドルフマン試験
- Authors: Mustafa Doger, Sennur Ulukus
- Abstract要約: 我々はDorfmanの2段階のグループテストアプローチを用いて感染を同定する。
我々は検疫と検査費用のトレードオフと病気の拡大を分析した。
- 参考スコア(独自算出の注目度): 59.96266198512243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider dynamical group testing problem with a community structure. With
a discrete-time SIR (susceptible, infectious, recovered) model, we use
Dorfman's two-step group testing approach to identify infections, and step in
whenever necessary to inhibit infection spread via quarantines. We analyze the
trade-off between quarantine and test costs as well as disease spread. For the
special dynamical i.i.d. model, we show that the optimal first stage Dorfman
group size differs in dynamic and static cases. We compare the performance of
the proposed dynamic two-stage Dorfman testing with state-of-the-art
non-adaptive group testing method in dynamic settings.
- Abstract(参考訳): コミュニティ構造による動的グループテストの問題を考える。
分離時間sir(susceptible, infection, recovery)モデルを用いて,dorfmanの2段階のグループテストアプローチを用いて感染を同定し,検疫による感染拡大を阻害するために必要な時にステップインする。
我々は隔離と検査費用のトレードオフと病気の拡大を分析した。
特殊動力学的i.d.モデルでは、最適第一段ドルフマン群のサイズが動的および静的ケースで異なることを示す。
提案した動的2段階Dorfmanテストの性能を動的設定における最先端非適応型グループテスト法と比較する。
関連論文リスト
- Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Adaptive Sequential Surveillance with Network and Temporal Dependence [1.7205106391379026]
戦略的なテストアロケーションは、パンデミックと既存のパンデミックの両方のコントロールにおいて重要な役割を果たしている。
感染症の監視は、ユニークな統計上の課題を提示する。
適応型シーケンシャル監視のためのオンライン・スーパーラーナーを提案する。
論文 参考訳(メタデータ) (2022-12-05T17:04:17Z) - Group Testing under Superspreading Dynamics [25.849716513803013]
グループテストは、確認された新型コロナウイルス患者のすべての密接な接触に対して推奨される。
そこで本研究では,Dorfman法と不完全性試験を併用した,よく知られた半適応型プールテスト法を構築し,動的プログラミングに基づく簡単なグループテスト法を導出する。
論文 参考訳(メタデータ) (2021-06-30T11:27:58Z) - Group Testing with a Graph Infection Spread Model [61.48558770435175]
感染は個人間のつながりを通じて広がり、その結果、確率的クラスター形成構造と、個人に対する非i.d.感染状態が生じる。
そこで本研究では,既知の確率的感染拡散モデルを利用する2段階のサンプルグループテストアルゴリズムを提案する。
その結果, 感染率が高い場合でも, 集団検査により必要な検査数を大幅に削減できることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T18:51:32Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Whom to Test? Active Sampling Strategies for Managing COVID-19 [1.4610038284393163]
本稿では、新型コロナウイルスなどのパンデミック時に感染を検査する個人を選択する方法を提案する。
ここで提示されるスマートテストのアイデアは、機械学習におけるアクティブラーニングとマルチアームバンディット技術によって動機付けられている。
論文 参考訳(メタデータ) (2020-12-25T02:04:50Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
病気の感染頻度が低い場合、Dorfman氏は80年前に、人のテストグループは個人でテストするよりも効率が良いことを示した。
本研究の目的は,ノイズの多い環境で動作可能な新しいグループテストアルゴリズムを提案することである。
論文 参考訳(メタデータ) (2020-04-26T23:41:33Z) - Quantifying the Effects of Contact Tracing, Testing, and Containment
Measures in the Presence of Infection Hotspots [18.227721607607183]
複数の証拠は、一人が他の多くの人に感染するホットスポットが、新型コロナウイルスの感染動態において重要な役割を担っていることを強く示唆している。
個人が接触し、互いに感染するサイトへの訪問を具体的に表現する、時間的ポイントプロセスモデリングフレームワークを導入する。
我々のモデルでは、自然に感染した個体によって引き起こされる感染の数が過度に分散する。
論文 参考訳(メタデータ) (2020-04-15T17:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。