論文の概要: On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization
- arxiv url: http://arxiv.org/abs/2201.12088v1
- Date: Fri, 28 Jan 2022 12:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 16:33:59.140232
- Title: On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization
- Title(参考訳): 物理誘導型ニューラルネットワークによるフィードフォワード制御:トレーニングコスト正規化と最適化初期化
- Authors: Max Bolderman, Mircea Lazar, Hans Butler
- Abstract要約: モデルベースのフィードフォワードコントローラの性能は、典型的には逆システム力学モデルの精度によって制限される。
本稿では,特定物理パラメータを用いた正規化手法を提案する。
実生活の産業用リニアモーターで検証され、追跡精度と外挿の精度が向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performance of model-based feedforward controllers is typically limited by
the accuracy of the inverse system dynamics model. Physics-guided neural
networks (PGNN), where a known physical model cooperates in parallel with a
neural network, were recently proposed as a method to achieve high accuracy of
the identified inverse dynamics. However, the flexible nature of neural
networks can create overparameterization when employed in parallel with a
physical model, which results in a parameter drift during training. This drift
may result in parameters of the physical model not corresponding to their
physical values, which increases vulnerability of the PGNN to operating
conditions not present in the training data. To address this problem, this
paper proposes a regularization method via identified physical parameters, in
combination with an optimized training initialization that improves training
convergence. The regularized PGNN framework is validated on a real-life
industrial linear motor, where it delivers better tracking accuracy and
extrapolation.
- Abstract(参考訳): モデルベースフィードフォワードコントローラの性能は通常、逆系のダイナミクスモデルの精度によって制限される。
物理誘導型ニューラルネットワーク(PGNN)は、同定された逆ダイナミクスの高精度化手法として最近提案されている。
しかし、ニューラルネットワークのフレキシブルな性質は、物理モデルと並行して使用すると過パラメータ化を発生させ、トレーニング中にパラメータドリフトが発生する。
このドリフトは、物理モデルのパラメータが物理値に対応しない可能性があるため、トレーニングデータに存在しない運用条件にpgnnの脆弱性が増大する。
そこで本研究では, 同定された物理パラメータによる正規化法と, 学習収束を改善する最適化トレーニング初期化法を組み合わせることを提案する。
正規化PGNNフレームワークは実生活の産業用リニアモータ上で検証され、追跡精度と外挿性が向上する。
関連論文リスト
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
新しいタイプのニューラルネットワークは、高速ニューラルネットワークパラダイムを用いて提示される。
提案したエミュレータを組み込んだニューラルネットワークは,予測精度を損なうことなく,ほぼ瞬時に学習できることが判明した。
論文 参考訳(メタデータ) (2023-09-12T22:34:34Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Unifying Model-Based and Neural Network Feedforward: Physics-Guided
Neural Networks with Linear Autoregressive Dynamics [0.0]
本稿では,未知の非線形力学を補償するフィードフォワード制御フレームワークを開発する。
フィードフォワードコントローラは、物理モデルとニューラルネットワークの並列結合としてパラメータ化される。
論文 参考訳(メタデータ) (2022-09-26T08:01:28Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - On the adaptation of recurrent neural networks for system identification [2.5234156040689237]
本稿では,動的システムのリカレントニューラルネットワーク(RNN)モデルの高速かつ効率的な適応を可能にするトランスファー学習手法を提案する。
その後、システムダイナミクスが変化すると仮定され、摂動系における名目モデルの性能が不可避的に低下する。
ミスマッチに対処するため、新しい動的状態からの新鮮なデータに基づいてトレーニングされた付加的補正項でモデルを拡張する。
論文 参考訳(メタデータ) (2022-01-21T12:04:17Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。