HiSTGNN: Hierarchical Spatio-temporal Graph Neural Networks for Weather
Forecasting
- URL: http://arxiv.org/abs/2201.09101v1
- Date: Sat, 22 Jan 2022 17:30:46 GMT
- Title: HiSTGNN: Hierarchical Spatio-temporal Graph Neural Networks for Weather
Forecasting
- Authors: Minbo Ma, Peng Xie, Fei Teng, Tianrui Li, Bin Wang, Shenggong Ji,
Junbo Zhang
- Abstract summary: We propose a novel Graph Hierarchical Spatio-Temporal Neural Network (HiSTGNN) to model cross-regional-temporal correlations among meteorological variables in multiple stations.
Experimental results on three real-world meteorological datasets demonstrate the superior performance of HiSTGNN beyond 7 baselines.
It reduces the errors by 4.2% to 11.6% especially compared to state-of-the-art weather forecasting method.
- Score: 13.317147032467306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather Forecasting is an attractive challengeable task due to its influence
on human life and complexity in atmospheric motion. Supported by massive
historical observed time series data, the task is suitable for data-driven
approaches, especially deep neural networks. Recently, the Graph Neural
Networks (GNNs) based methods have achieved excellent performance for
spatio-temporal forecasting. However, the canonical GNNs-based methods only
individually model the local graph of meteorological variables per station or
the global graph of whole stations, lacking information interaction between
meteorological variables in different stations. In this paper, we propose a
novel Hierarchical Spatio-Temporal Graph Neural Network (HiSTGNN) to model
cross-regional spatio-temporal correlations among meteorological variables in
multiple stations. An adaptive graph learning layer and spatial graph
convolution are employed to construct self-learning graph and study hidden
dependency among nodes of variable-level and station-level graph. For capturing
temporal pattern, the dilated inception as the backbone of gate temporal
convolution is designed to model long and various meteorological trends.
Moreover, a dynamic interaction learning is proposed to build bidirectional
information passing in hierarchical graph. Experimental results on three
real-world meteorological datasets demonstrate the superior performance of
HiSTGNN beyond 7 baselines and it reduces the errors by 4.2% to 11.6%
especially compared to state-of-the-art weather forecasting method.
Related papers
- Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - SAMSGL: Series-Aligned Multi-Scale Graph Learning for Spatio-Temporal Forecasting [9.013416216828361]
We present a Series-Aligned Multi-Scale Graph Learning (SGL) framework, aiming to enhance forecasting performance.
In this work, we propose a series-aligned graph layer to facilitate the aggregation of non-delayed graph signals.
We conduct experiments on meteorological and traffic forecasting datasets, which demonstrate its effectiveness and superiority.
arXiv Detail & Related papers (2023-12-05T10:37:54Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4I model is designed to handle both irregular time steps and partial observations of the graph.
Time-continuous dynamics enables the model to make predictions at arbitrary time steps.
Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics.
arXiv Detail & Related papers (2023-02-16T16:47:55Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
arXiv Detail & Related papers (2022-02-25T10:02:49Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network [2.7088996845250897]
We argue that temporal is less effective to extract the complex-temporal relationship with such factorized modules.
We propose a Unified S-weekly Graph Convolution (USTGCN) for traffic forecasting that performs both spatial and temporal aggregation.
Our model USTGCN can outperform state-of-the-art performances in three popular benchmark datasets.
arXiv Detail & Related papers (2021-04-26T12:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.